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ABSTRACT 

Make-to-order (MTO) operations have to effectively manage their capacity to make long-term 

sustainable profits. This objective can be met by selectively accepting available customer orders 

and simultaneously planning for capacity. We model a MTO operation of a job-shop with 

multiple resources having regular and non-regular capacity. The MTO firm has a set of customer 

orders at time zero with fixed due-dates. The process route, processing times, and sales price for 

each order are all given. Since orders compete for limited resources, the firm can only accept 

some orders. In this paper we formulate a Mixed-Integer Linear Program (MILP) to aid an 

operational manager to decide which orders to accept and how to allocate resources such that the 

overall profit is maximized. A branch-and-price algorithm is devised to solve the MILP 

effectively. The MILP is first decomposed into a master problem and several sub-problems using 

Dantzig-Wolfe decomposition. Each sub-problem is represented as a network flow problem and 

an exact procedure is proposed to solve the sub-problems efficiently. We also propose an 

approximate branch-and-price scheme, Lagrangian bounds, and approximations to fathom nodes 

in the branch-and-bound tree. Computational analysis shows that the proposed branch-and-price 

algorithm can solve large problem instances with relatively short time. 

 

Keywords: Order Acceptance, Branch-and-Price, Capacity Planning, Make-to-Order Operations, 

and Large-Scale Optimization. 
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1. INTRODUCTION 

1.1. Background 

The focus on innovation and customer satisfaction has led to shortened product development life 

cycles and mass customization, compelling the manufacturers to remain agile and flexible. These 

factors have contributed to an increase in the popularity of make-to-order (MTO) operational 

philosophy (Jalora, 2006).  MTO firms are process-focused, as the products manufactured share 

the same kind of operations but differ in the design details making them efficient not only for 

unique product manufacturing but also for producing greater product variety at lower cost 

(Gallien et al., 2004). This policy allows a high degree of operational flexibility and the products 

manufactured are one of a kind or in small batches.  It is advantageous when the end product is 

customer specific with high component-level customization unique to each customer. A MTO 

firm starts working on an order only after it has been placed by the customer. Typical examples 

of MTO operations are found in engineering tooling, industrial boilers, chemical equipment, 

construction, and general engineering/contracting industries (Chen, 2006).  

 

MTO is characterized by back orders with zero inventories as each customer order is unique and 

cannot be manufactured in advance. The only way to make sustainable profits is by managing the 

customer demands which is achieved by effectively and efficiently using available capacity. 

Because the main driver in MTO operations is customer orders, it is vital to coordinate 

operations and sales functions for effective use of available resources by managing the demand 

placed on the system (Mehmet and Sridharan, 2005). In practice, decisions on order acceptance 

and production planning are often functionally separated. The objective of the sales department 

is to bring as much revenue as possible. The sales department thus will tend to accept all orders, 

regardless of the available capacity, because its goal is to maximize the sales revenue. 

Manufacturing on the other hand, is concerned with limited capacity and tries to maximize 

resources utilization, while minimizing the number of tardy deliveries. Without effective 

coordination and look-forward mechanisms, order acceptance decisions are often made without 

involving production department or with incomplete information on the available capacity 

(Slotnick and Morton, 2007). Accepting each available order is the tendency of the sales 

department, which often leads to an over-loaded production system, making it difficult to meet 

deadlines and other delivery commitments. To deal with this short-term capacity problem, 
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management usually relies on additional non-regular capacity like overtime and outsourcing, 

thereby increasing its costs. This may lead to lower profit margins or even negative profits. 

Tardy deliveries may lead to penalty costs and possibly loss of customer goodwill (Ebben et al., 

2005, Slotnick and Morton, 2007).  

 

While negotiating contracts in a MTO environment, the company can either adjust the price or 

lead time for an order.  If the order has non-negotiable tight due-dates, the MTO firm can charge 

a premium for accepting that order as it might have to be expedited with the use of non-regular 

capacity. Recent experience of firms such as Amazon.com, however, indicates that customers 

may be unwilling to accept dynamic pricing as fair (Streitfeld, 2000). An alternative to dynamic 

pricing would be to view the issue as one of allocating capacity between competing orders, 

making it a capacity allocation problem. With multiple orders, each providing a different profit 

contribution, the capacity allocation problem becomes an order acceptance or refusal problem 

(Harris and Pinder, 1995; Barut and Sridharan, 2004). 

 

1.2. Problem Description 

A make-to-order operation in a job shop environment is considered in this research. The MTO 

firm has a set of bids or customer orders to consider. A customer order is referred to as jobs in 

the context of this research. The decision to be made is which customer order to accept and how 

to schedule it in order to maximize the profit and to fulfill the accepted orders by the due date. 

Both decisions should be made simultaneously, otherwise an order may be accepted but the 

available residual capacity may not permit on-time delivery.  

 

Each customer order has a set of operations to be processed with linear precedence constraint 

and deterministic processing times, a fixed due-date, and a known sales price. No tardy 

deliveries are allowed. There are multiple types of resources. Each resource type has one or more 

machines. Furthermore, job recirculation is allowed, which means that the jobs can visit the same 

resource more than once. The cost of using a resource depends on its source. The objective 

considered is to maximize the operational profit over a planning horizon considering only the 

sales price and the manufacturing costs by accepting a subset of customer orders. The planning 

horizon is discretized into time buckets of equal length know as time periods. Without loss of 
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generality we assume that each time period is one day. Furthermore each day is divided into two 

capacity sources viz. regular time and overtime. Overtime is usually considered more expensive. 

The decision of accepting or rejecting the orders is done at the beginning of the day. Figure 1 

shows a schematic representation of a typical order acceptance problem in a job shop 

environment functioning under a MTO operation mode. 

 

 

Figure 1. Customer order processing in a job shop-MTO operation 

 The job shop used for illustration purpose has three resources. Resource 1 has two machines of 

the same type, while resources 2 and 3 each have a single machine. There are three orders, each 

having a known sales price and a fixed due date. Each order has a different process route with 

deterministic processing times. For example, the process route for customer order 1 is Resource 

1 → Resource 2 → Resource 3. The order acceptance and capacity planning process is to decide 

which order to accept at the current decision time, and the number of hours for which each 

resource has to be assigned in each time period and source to each of the accepted jobs, while 

considering all the constraints stated in the problem description. 

 

The primary objective of this research is to formulate the MTO problem under study and develop 

solution approaches which can solve large problem instances effectively and efficiently. The 

problem under study is modeled as a Mixed-Integer Linear Program (MILP). However, the 

proposed MILP takes prohibitively long runtimes for solving problems with more than 5 jobs as 

illustrated in Section 3.3. In order to use the proposed model in practice it is important to device 

efficient solution methodologies. Since the proposed MILP inherits the block diagonal structure, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 
 

Dantzig-Wolfe decomposition procedure is applied to decompose the MILP into a master 

problem and several sub-problems (one sub-problem for each customer order). Later a branch-

and-price (B&P) algorithm is proposed for solving the proposed MILP. 

 

The rest of this paper is organized as follows. Section 2 reviews relevant literature. Section 3 

presents a formal definition of the problem and a mathematical model along with its assumptions 

and limitations. Section 4 proposes an exact and approximate B&P algorithm to solve the 

problem under consideration and various approximation schemes for exploring the branch and 

bound tree. The experimentation and computational results are presented in Section 5, with 

concluding remarks and future extensions given in Section 6. 

2. LITERATURE REVIEW 

Order acceptance in manufacturing is closely related to the principles of revenue management 

(RM) which is commonly used in the service industry for order acceptance and refusal process, 

with differential pricing, capacity reallocation and overbooking (Harris and Pinder, 1995). There 

has been an emerging interest in applying RM to the manufacturing industry for both MTO and 

make-to-stock (MTS) operations. In MTO, the decisions of order acceptance, lead-time or due 

date quotation, pricing and capacity planning are closely related. In the absence of differential 

pricing, RM becomes a capacity allocation and order acceptance problem. Order acceptance in 

MTO can be broadly classified by static and dynamic arrivals of customer orders. The problem 

under study falls in the category of static arrival of customer orders. Section 2.1 focuses on the 

static arrivals. Section 2.2 focuses on the applications of column generation technique, especially 

in the area of scheduling.   

 

2.1. Order acceptance with static arrivals 

Within the operational domain of job shop planning with static customer arrivals, job selection 

has been a topic of growing interest. The problem of selecting and ordering job elements from a 

given set so as to optimize an objective function was considered by Bahram et al. (2001). They 

present a generalization of the best-in rule that in many cases can solve the problem while the 

best-in rule does not.  
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Slotnick and Morton (1996) examine a set of trade-offs that can arise if a manufacturing facility 

has more potential work than it can handle easily. They formulate a one-machine model with 

static arrivals, fixed processing times, due dates and profits. The objective function maximizes 

total net profit, which is the sum of the revenues of all jobs minus weighted lateness penalties, by 

selecting a subset of jobs. Ghosh (1997) proves that the Slotnick and Morton (1996) version of 

the job selection problem is NP-Hard. He also proposed two dynamic programs. 

  

In an extension to Slotnick and Morton (1996), Herbert and Slotnick (2002) examine the 

profitability of job selection decisions over a number of periods when current orders exceed 

capacity with the objective of maximizing profit and when rejecting a job will result in no future 

jobs from that customer. The firm processes jobs, over a number of time periods (stages) within a 

given time horizon. The firm has several customers at the beginning of the first period; each 

customer submits one job at each stage, until one of the jobs is rejected. Each job has pre-

determined revenue, and the firms pay back a discount to customers whose jobs are completed 

past a pre-determined due-date; customers are willing to pay a premium for early delivery. Each 

job has a known processing time and importance. The importance of the job is the weight 

assigned to it for calculating the lateness penalty. This weight allows the firm to indicate that 

certain jobs may have importance beyond their immediate profit. The firm has the option of 

rejecting any job. If a job is rejected, the customer is lost (i.e. it never sends another job to be 

processed within the planning horizon). 

 

Slotnick and Morton (2007) model a manufacturing facility that considers a pool of orders, and 

chooses for processing a subset that results in the highest profit. In addition to the problem 

characteristics in Slotnick and Morton (1996) they consider customer weight. The objective is to 

maximize profit, which is the sum of per-job revenues minus total weighted tardiness. They 

propose two approaches: separation of sequencing and job acceptance decisions, utilizing a 

property of the problem that is exploited to good advantage in the analogous problem with 

weighted lateness and a joint consideration of sequencing and acceptance, using relaxation. They 

state that the joint approach is far superior to the first. Rom and Slotnick (2009) also propose a 

genetic algorithm (GA) to solve the order acceptance problem with tardiness penalties. 
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2.2. Applications of column generation in scheduling 

Column generation has been successfully used in job scheduling for common due date (Van den 

Akker et al., 1997), parallel machines (Van den Akker et al., 1999a), and single machines (Van 

den Akker et al., 1999b, 2000). For a detailed taxonomy of the column generation literature we 

refer to Wilhelm (2001). Hans (2001) developed a B&P loading method that is an exact approach 

for solving the pre-emptive resource loading problem. The objective is to generate a schedule for 

each order, such that the total costs of the required non-regular capacity and the tardiness 

penalties are minimized.  

 

This research considers an order acceptance problem in multi-resource job shop environment 

with regular and non-regular capacity and static customer arrivals. The only research which 

tackles a multi-resource job shop problem is by Ebben et al. (2005); but they do not consider 

non-regular capacity (overtime) and the customer arrivals are dynamic. A MILP formulation is 

proposed for the problem under study, its structure is studied and later exploited to develop a 

B&P algorithm to solve large problem instances of practical interest. To the best of our 

knowledge the B&P approach has never been used for order acceptance; although Hans (2001) 

has developed a B&P resource loading (BPRL) approach for scheduling orders which have 

already been selected. Ebben et al. (2005) use the BPRL technique in their simulation for 

scheduling the already accepted orders. 

 

Table 1 summarizes the literature related to the proposed problem under study. The table 

compares and contrasts the literature reported on problems similar to the problem under study. It 

is evident from this table that the proposed problem and the solution approach are different from 

what is reported in the literature so far.  
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Table 1. Summary of relevant literature and contribution of proposed research 

Research Objective 
Order 

Acceptance 

Multiple 

Resources 

Non-regular 

Capacity 

Fixed 

Due-dates 

Solution 

Approach 

Hans, 2001 
Minimize non-regular 
capacity costs and 
tardiness penalties 

No Yes Yes No Branch and 
Price 

Slotnick and 
Morton, 1996 Maximize Profit Yes No No No Heuristic 

Slotnick and 
Morton, 2007 Maximize Profit Yes No No No Branch and 

Bound 
Lewis and 
Slotnick, 2002 Maximize Profit Yes No No No DP, Heuristic 

Proposed 
Research Maximize Profit Yes Yes Yes Yes Branch and 

Price 
 

3. PROBLEM DEFINITION 

3.1. Mathematical formulation 

The MTO operation is modeled as a job shop with multiple resources ሼݎ א ܴሽ. Each resource 

type r can have multiple machines. A finite planning horizon is considered which is discretized 

into equal interval time periods ሼݐ א ܶሽ. Without loss of generality we assume that each time 

period is one day. Furthermore each day is divided into sources ሼݏ א ܵሽ viz. regular time and 

overtime. The length of each source s in time period t is given by lts and is assumed to be eight 

hours, but can be varied according to the need. The available capacity of resource r in source s of 

time period t is denoted by brts. The MTO firm receives a set of customer orders or jobs ሼ݆ א  .ሽܬ

Each job j has a set of operations ൛݋ א ௝ܱൟ with a processing time pjor on resource r, a fixed due 

date dj and a sales price qj. Each job can follow different processing route and the operations 

have a linear precedence relationship. The cost of using a resource r in each source s is 

represented in unit cost per hour crs. Overtime is usually considered more expensive. The 

objective is to maximize the profit of the MTO operation by selectively accepting the customer 

orders and planning for their capacity within the planning horizon, such that the accepted orders 

are completed before their due dates.  

 

The decision variables used in the model are: 

Xjortsൌ hours of operation o of job j processed on resource r in source s of period t  
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Yjorts= ൜1, if operation o of job j is processed on resource r in source s of period t
0,  otherwise                                                                                                               

Uj= ൜ 1, if job j is selected or accepted
   0,  otherwise                                            

 

The mathematical formulation proposed for the problem under study is presented below. 

Maximize Z= ෍ qjUj
jאJ

- ෍ ෍ ෍ ෍ ෍ crsXjorts
sאStאTrאRoאOjjאJ

 (1)

subject to  

෍ ෍ Xjorts
oאOjjאJ

≤  brts ׊rאR,tאT,sאS (2)

෍ ෍ Xjorts= pjorUj
tאTsאS

R (3)אOj,rאJ,oאj׊ 

෍ ෍ Xjorts≤ lts
rאRoאOj

S (4)אT,sאJ,tאj׊ 

Xjorts≥ τYjorts ׊jאJ,oאOj,rאR,tאT,sאS (5)

Xjorts≤ pjorYjorts ׊jאJ,oאOj,rאR,tאT,sאS (6)

෍ tYj|Oj|rts
rאR

≤ djUj ׊jאJ,tאT,sאS (7)

෍ ෍ Xjሺo-1ሻrt's'

t-1

t'=1s'אS

+ ෍ Xjሺo-1ሻrts'

s

s'=1

≥ pjሺo-1ሻr ෍ Yjor'ts
r'אR

 
   ,TאR,tאOj\ሼ1ሽ,rאJ,oאj׊

sאS\ሼ|S|ሽ 

(8)

෍ ෍ Xjሺo-1ሻrt's≥ pjሺo-1ሻr ෍ Yjor'|S|t
r'אR

t

t'ൌ1sאS

 
T (9)אR,tאOj\ሼ1ሽ,rאJ,oאj׊

Xjorts≥ 0 ׊jאJ,oאOj,rאR,tאT,sאS (10)

Yjortsאሼ0,1ሽ ׊jאJ,oאOj,rאR,tאT,sאS (11)

Ujאሼ0,1ሽ ׊jאJ (12)

 

Objective (1) is formulated to maximize the total net profit over the planning horizon.  The first 

term in the objective function is the total revenue and the second term is the total labor or 

manufacturing cost.  Constraint set (2) ensures that the capacity of resource r of source s in time 

period t is not violated. Constraint set (3) ensures that adequate resources are allocated to process 

operation o of job j.  The total number of hours allocated to process an operation should be equal 
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to its processing time.  The equality (=) in constraint (3) can be replaced with an inequality (≥).  

The second term in the objective will prevent allocating more resources than what is required.  

 

Constraint set (4) ensures that each operation of a job is processed for no more than lts hours in 

each source during each time period.  If the processing time of operation o is less than lts, then it 

is possible to start processing the next operation (o+1) in the same time period.  Since operation 

(o+1) cannot be started before operation o, the remaining time available for operation (o+1) in 

period t is only (lts-pjor).  Consequently, the total time allocated to process job j in any time 

period cannot exceed lts hours.  The constraint sets (5) and (6) set the Yjorts decision variables to 

either 1 or 0.  It takes a value of 1 when Xjorts > 0, indicating that operation o of job j is scheduled 

for processing on resource r of source s in time period t; otherwise it takes a value of 0.  The Yjorts 

variables are used to ensure the precedence relationship.  The parameter τ in constraint (5) 

indicates that whenever an operation is processed on a resource it should be processed for at least 

τ units of time. The constraint set (7) ensures that when an order for a job is accepted, the 

completion time of the last operation of that order does not exceed the order due date. 

 

The next two constraints impose precedence restrictions.  Constraint set (8) ensures that 

operation o of job j can be processed in period t during regular hours only after completing 

operation (o-1).  The first term in constraint (8) represents the total number of hours allotted to 

process operation (o-1) in time periods 1,…,(t-1). It includes both the regular time and overtime 

hours allocated to process operation (o-1) in each time period up to and including (t-1). The 

second term in constraint (8) represents the number of hours allocated to process operation (o-1) 

in time period t during regular hours.  The constraint set (9) ensures that operation o of job j can 

be processed in period t during overtime only after completing operation (o-1).  Constraint sets 

(10) – (12) impose the non-negativity restrictions on the decision variables.  In particular, the 

constraint sets (11) and (12) impose the binary restrictions on the decision variables Y and U. 

 

3.2. Decision support using the proposed model 

The model proposed in the previous section can help the operations manager/decision maker to 

determine which subset of incoming customer orders should be selected to maximize profits. It 

can be integrated into a decision support system which can be used to make decisions on day-to-
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day basis for selecting customer orders and planning for their capacity such that they are 

completed before their due dates. This is useful to carefully plan for the resources used in 

overtime hours.  The model can be run at the beginning of each decision period, such that the 

operations manager can reserve capacity for already accepted orders and determine which new 

orders to accept. In situation where a particular order(s) have to be selected for strategic reasons, 

a corresponding subset of order(s) that will maximize the profits can also be determined. The 

model is also useful to reschedule the already accepted orders when new orders have to be 

accepted.  We present an example to illustrate how the user can utilize this model. 

 

Consider a job shop with 3 resources having a pool of three customer orders namely jobs 1, 2 

and 3 at the start of time period 1.  Table 2 shows the characteristics of these three customer 

orders. The cost of using each resource in different sources namely, regular time (RT) and 

overtime (OT) are given in Table 3. It is assumed that regular production time and overtime is 8 

hours each. The decision maker has to decide which jobs to accept and how to schedule the 

accepted jobs such that they are processed before their due date.  The objective is to maximize 

total profit.  The MILP model for the example problem is solved using the commercial MILP 

solver CPLEX to determine the optimum solution. The optimum profit is $570 when customer 

orders 2 and 3 are accepted and the corresponding capacity plan is shown in Figure 2(a). Now 

consider that at the start of time period 2 two more orders (for jobs 4 and 5) are received, which 

have to be delivered by time period 4. Table 4 shows the characteristics of these two new orders.  

Table 2. Customer orders available at time zero 

Customer 
Order 
(Job j) 

Sales Price 
(qj) 

Due Date 
(dj) 

Operation 
(oj) 

Resource 
(r) 

Processing 
Time 
(pjor) 

1 $800 2 1 1 10 
2 3 8 

2 $950 3 
1 1 8 
2 2 6 
3 2 12 

3 $1560 3 
1 1 10 
2 2 8 
3 3 12 
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Table 3. Resource cost ($/hr) for each source 

Resource # (r) Regular time (RT) cost 
($/hr) 

Overtime (OT) cost 
($/hr) 

1 40 60 
2 20 30 
3 30 45 

Table 4. Customer order available at time one 

Customer 
Order 
(Job j) 

Sales Price 
(qj) 

Due Date 
(dj) 

Operation 
(oj) 

Resource 
(r) 

Processing 
Time 
(pjor) 

4 $400 4 1 2 8 
2 3 6 

5 $800 4 
1 1 8 
2 3 8 
3 2 6 

 

The decision maker would like to know whether or not to accept these orders as some of the 

resources have already been reserved to process orders for jobs 2 and 3 at the beginning of the 

first time period. When the mathematical model was solved with the new information, job 5 was 

chosen. The capacity planned for jobs 2 and 3 in period 1 cannot be changed, however the 

capacity allocated can be altered for the subsequent time periods. The model revises the capacity 

for job 2 and job 3 in periods 2 and 3 so as to optimally process job 5.  The new capacity plan is 

shown in Figure 2(b). When jobs 2 and 3 were initially accepted the model prescribed a profit of 

$200 and $370, respectively. After job 5 was accepted, the profit of job 2 was reduced to $150, 

but by accepting job 5 the overall profit was increased to $770.  

 
Figure 2. Capacity plan for accepted orders at start of period 1 and 2 
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3.3. Computational runtime analysis 

The commercial solver CPLEX was used to experiment with the model proposed. CPLEX uses a 

branch and bound approach to fix the fractional variables to integer values. Consequently, it may 

not be able to solve problem instances with large number of integer variables in reasonable time. 

An experimental study (Experiment A) was conducted to determine the effect of problem size on 

the run-time (computation time) required to find an optimal solution. Various factors determine 

the size of the problem, namely, the number of customer orders or jobs, number of operations for 

each job, the number of resources, due dates for each job and the planning horizon. We introduce 

a demand-to-capacity ratio (DC ratio) to control the load on the MTO shop-floor. The DC ratio is 

the ratio of the demand to the regular time capacity available in the MTO operation given by 

equation (13), over the planning horizon with |T| time periods. If the total demand and the 

available resources are known, problem instances can be generated by computing the number of 

time periods required for a fixed DC ratio using equation (14).  

  DC Ratio= 
∑ ∑ ∑ ௣ೕ೚ೝroאOjjאJ

∑ ∑ brt,sൌ1tאTrאR
  (13)  

 Number of Time Period ሺ|T|ሻ= ඄
∑ ∑ ∑ pjorrאRoאOjjאJ

|R|*lt,s=1*(DC ratio)
ඈ    (14)  

 

Table 5 presents the data used for Experiment A. Number of jobs and numbers of operations for 

each job are the two factors which are varied. The length of each source was fixed to 8 hours. 

For a DC ratio of 1.0 with different levels for jobs and operations, the planning horizon varied 

from 3 to 17 time periods. For each combination of the factor and level, three instances were 

randomly generated. The due date for each job was equal to the planning horizon computed for 

that problem instance. The ratio of regular time to overtime cost was kept constant at 1:1.5. The 

runtime to solve the model to optimality was reported. Figure 3 shows the runtime in seconds 

against the number of operations per job for 3 job and 5 job instances. In two instances for 5 jobs 

with 8 operations, CPLEX was not able to find an optimal solution even after running for more 

than 16 hours; hence for those instances the optimality gap is reported in Figure 3.  
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Table 5. Data for Experiment A (computational runtime analysis) 

Factors Levels 

Number of jobs 3, and 5 
Number of Operations 3,5, and 8 
Number of resources 3 
Number of sources 2 (Regular Time, and overtime) 
Processing time Discrete Uniform (4,16) hours 
Demand-to-Capacity Ratio 1.0 

 

 

Figure 3. Computation runtime to solve MTO mathematical model to optimality 

For the above problems, the planning horizon was anywhere between 3 to 17 days. We aspire to 

solve short-term capacity planning problems with a planning horizon up to a month (30 days) 

and a set of 8 to 10 customer orders, each having more than 5 operations. While negotiating with 

the customers (during quotation process), sales department may have to consider different 

scenarios before accepting an order. Many customers are sensitive to time and may require the 

manufacturer to respond in a timely fashion. On the other hand the manufacturer should assess 

the current workload and available capacity to make judicious decisions. Considering the above 

factors, there is a need to generate solutions to the order acceptance and capacity planning in 

MTO operations relatively quickly for large problem sizes. In the next section we present a B&P 

algorithm for solving the MILP proposed in Section 3.1. 

4. BRANCH AND PRICE ALGORITHM 

4.1. Model decomposition 

The proposed MTO model inherits a block diagonal or angular structure as shown in Figure 4. 

This special structure is well suited for applying the Dantzig-Wolfe decomposition principle. In 

Dantzig-Wolfe decomposition, the original formulation is decomposed into a master problem 

3 5 8

Number of operations

3 jobs runtime 0.35 2.66 3509.78
5 jobs runtime 0.57 577.98 52954.7
5 job optimality gap 0 0 3.89%
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and one or more sub-problems. Instead of enumerating all the variables (columns) in the master 

problem, columns which improve the objective are generated as needed by solving the sub 

problem(s). The sub problem (or pricing problem) and the master problem (or restricted master 

problem) is solved iteratively until no columns can be generated. When the master problem is 

solved the integer restrictions on the variables are typically relaxed. Consequently, when no 

improving column can be generated a branch and bound search procedure is implemented to fix 

non-integer decision variables. At each node of the branch and bound search tree the column 

generation procedure is applied. This entire process is referred to as branch-and-price in the 

literature. For a detailed discussion on B&P, we refer the reader to Wilhelm (2001).  

 

The capacity constraint (2) is the binding or complicating constraint in our formulation. The rest 

of the constraints can be decomposed into sets of constraints for each job that can go in the sub-

problem. The sub-problem solution will generate the schedule for the corresponding job that can 

be added as a column to the restricted master problem (RMP).  

 

Capacity Constraint  Binding

Job 1

Job 2

Job |J|

Subproblems

 

Figure 4. Decomposition of the MTO model (Block-Diagonal Structure) 

The MTO restricted master problem is formulated as follows: 

Maximize ZRMP
LP = ෍ qjUj

jאJ

- ෍ ෍ ෍ ෍ ෍ ෍ (crsxjorts
k

kאKjsאStאTrאRoאOjjאJ

)λj
k (15)

Subject to   

෍ ෍ ෍ xjorts
k λj

k≤ brts
kאKjoאOjjאJ

S (16)אT,sאR,tאr׊ 

෍ λj
k= Uj

kאKj

J (17)אj׊ 

λj
k≥ 0 binary ׊jאJ,kאKj (18)

Uj≥ 0 binary ׊jאJ (19)
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Where, Kj is the set of columns generated from solving the sub-problem for job j. A column is a 

feasible schedule for the corresponding job. An initial feasible solution to the RMP is determined 

by a greedy heuristic presented in Section 4.3. 

 

A feasible schedule for job j should satisfy the processing time constraint (3), the physical 

constraint of processing job j for not more than lts hours in source s of time period t, the due-date 

constraint (7) and the precedence constraints (8) and (9). The corresponding formulation for the 

sub-problem or pricing problem of job j will consist of the constraint set (3) to (11) with an 

objective of minimizing the total manufacturing cost. The objective function for the pricing 

problem is formulated as, 

Minimize Zsp
j = ෍ ෍ ෍ ෍ (crs+wrts)xorts

sאStאTrאRoאOj

௝ (20)ߙ+

Where, wrts and ߙ is the dual variables of constraints (16) and (17), respectively. Ideally, the 

solution approach for solving the sub-problem should be fast as it has to be solved many times 

during the B&P procedure. In B&P the sub-problems need not be solved to optimality, a 

heuristic can be used to generate improving columns. Upon further analyzing the structure of 

each sub-problem, a network flow representation is identified and exploited to solve the sub-

problems efficiently. The construction of the network and the solution approach to solve the 

network flow problem to obtain feasible schedule for each job is presented in the next section. 

 

4.2. Exact procedure for solving the sub-problem 

The sub-problem for job j is represented as a Directed Acyclic Graph (DAG) Gj=൛Nj,Ajൟ, where 

Nj denotes the set of nodes and Aj denotes the set of arcs. Each time period is discretized into 

smaller intervals with equal length denoted by dtu. Let the set of discretized time instants for job 

j from time period one till its due-date dj be Hj= ቄ1,2,…, ∑ ∑ lts
dtusאS

dj
t=1 ቅ. Each operation o of job j 

is split into dtu sized operations. Let the set of split operations for all the operations in j be 

Ej= ൜1,…,
∑ pjoroאOj

dtu
ൠ where r is the resource type on which operation o of job j needs to be 

processed and let the set Io
j = ൝1,…,

pjor
dtuൗ ൡ   be the set of split operations for operation o of job j. 

The set of nodes consists of three types, an artificial source node, an artificial sink node, and 
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OperationTimeNodes. The nodes in OperationTimeNodes set are denoted by a 2-tuple 

N൛eאEj,hאHjൟ such that we have |Hj| nodes corresponding to each element in Ej. We have lts/dtu 

nodes in Hj corresponding to each source s in time period t. There is a set of secondary attribute 

for each node represented by a 4-tuple SAe,h൛oאOj,iאIo
j rאR,tאT,sאSൟ. The set of arcs consists of 

two distinct types, set of idle arcs ൛IArcsكAjൟ and set of processing arcs ൛PArcsكAjൟ. An arc is 

represented by the notation Ae,h
e'h' , where (e,h) and (e’,h’) is the tail node and head node 

respectively. There is a cost associated with each arc denoted by Ceh
e'h'. Idle arcs are connected 

between two consecutive nodes of the same split operation starting at node {e,h} and ending at 

{e,h+1}. The processing arc starting from node {e,h} goes to node {e+1,h+1}. This ensures that 

each discretized operation e is completed before starting discretized operation e+1. This structure 

captures the precedence constraint of the sub-problem. All arc capacities are set to one. A unit 

flow in the processing arc implies that the split operation e is processed for dtu time units in time 

instance h. A unit flow in the idle arc implies that the split operation e will not be processed for 

dtu time units in time instance h. A unit flow sent from the source node reaching the sink node 

ensures that all the operations in job j are processed by the due-date dj. The cost of idle arc is 

zero while the cost of the processing arc is given by crs+wrts, where r is the resource on which 

operation o of job j needs to be processed in source s of time period t.  The arc connecting the 

source node to the first node in the operationTimeNodes N{1,1} is denoted by Asource
1,1  and cost of 

that is fixed to zero. All the arcs to the sink node are denoted Ae,h
sink. The shortest path from the 

source node to the sink node gives us the schedule for job j at the minimum processing cost. 

Figure 5 shows a general DAG representation of the sub-problem. 

 

It is apparent from Figure 5 that there exist nodes which cannot be reached from the source node 

or nodes whose outbound flow can never reach the sink node and as such they can never be part 

of the shortest path. Hence we can eliminate such nodes. To further understand this concept, 

consider a sub-problem for job j with three operations having processing times 5, 2, and 3 hours, 

respectively. For simplicity consider that they need to be processed on the same resource. Let the 

due-date for job j be dj = 1 day and we have two sources, regular time and over time of 8 hours 

each. Suppose we discretize time in units of one hour, the corresponding graph for the sub-

problem is shown in Figure 6. The earliest we can process split operation e=1 is in time instance 
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1 corresponding to h=1, which implies that the earliest we can process split operation e’=e+1=2 

is in h’=h+1=2, and thus all the nodes for e’=2 before time instance h’=2 can be ignored in Gj. 

For processing job j by its due-date, the latest we can process the split operation e=1 is in time 

instance 7 corresponding to h=7, thus the flow from all the nodes ሼh16,...,8א ,e=1ሽ cannot reach 

the sink node and thus the corresponding nodes can be ignored in Gj. This logic can be extended 

to all the split operations and time instances ൛eאEj, hאHjൟ to eliminate the unwanted nodes. 

 

 

Figure 5. General Directed Acyclic Graph (DAG) representation of the sub-problem 

Figure 6 shows a feasible path from the source node to the sink node. The nodes visited in the 

path are shaded in black and the path is represented by thick arrows. In each time period and 

source we can count for each operation how many processing arcs have been traversed which 

will give us the number of hours of processing of that operation. For example, for regular time in 

time period 1, operation 1 is processed for four hours. This information is used to determine the 

X variables (i.e. Xj1r11 = 4) for each column. 
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Figure 6. Illustration of DAG for sub-problem representation 

The pseudo code for finding the shortest path for acyclic digraph (Rardin, 1998) and extracting 

the schedule from the shortest path solution are given below:  

Algorithm for finding the shortest path: 

BEGIN 
ሾܰሼ1,1ሽሿݒ ՚ 0  
ሾܰሼ1,1ሽሿ݋݄ܶݐܽܲݐ݌݋ ՚   ݁݀݋݊ ݁ܿݎݑ݋ݏ
For Nሼe',h'ሽאOperationTimeNodes ൛eאEj,hאHjൟ\N{1,1} 
 If N{e’,h’} exists then 
  For Nሼe,hሽא ቄN൛e',h'-1ൟ,N൛e'-1,h'1-ൟቅ 

   vൣN{e',h'}൧←min ቄvሾN{e,h}ሿ+Ceh
e'h'

 : ቀAeh
e'h'

exists ቁቅ 
   optPathToሾNሼe',h'ሽሿ←node Nሼe,hሽ achieving the minimum cost 
  End for 
 End if 
End for  
Let vሾsink nodeሿ←min༌ ቄvൣN{|Ej|,h}൧+Ceh

sink : ቀA|Ej|h
sink exists,׊hאHjቁቅ 

Let optPathToሾsink nodeሿ←node Nሼe,hሽ achieving the minimum cost 
END 

 

Algorithm to extract schedule from the shortest path solution for sub-problem j: 
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BEGIN 
Initialize xjorts=0 ൫׊oאOj,rאR,tאT,sאS൯ 
Let Nሼe,hሽ←optPathTo[sink node]  
 If (Ae,h

sinkאPArcs) then 
 Let xjorts←xjorts+1 (׊o,r,t,sאSAe,h) 
End if 
While (N{e,h} ≠ source node) 
 Let Nሼe',h'ሽ←optPathTo[Nሼe,hሽ]  
 If (Ae',h'

e,h  PArcs) thenא
  Let xjorts←xjorts+1 (׊o,r,t,sאSAe',h') 
 End if 
 Let Nሼe,hሽ←Nሼe',h'ሽ  
End while 
END 

 

4.3. Greedy heuristic for initial solution to RMP 

A greedy heuristic is proposed to obtain the initial basic feasible solution to the RMP. The set of 

available jobs J are sorted in a non-increasing order of their profit margins, where profit margin 

is the ratio of the sales price to the cost of processing the job in regular time, and stored in a list. 

Each job in this list is scheduled one at a time with an objective of minimizing their processing 

costs. To determine the schedule, the sub-problem solution approach described in Section 4.2 is 

followed. If the schedule determined improves the objective function value (i.e. the total profit) 

then the job is accepted and the residual capacities for the resources are updated, else the job is 

rejected. The dual prices are set to zero for the capacity constraints and the convexity constraints.  

The costs of the processing arcs which have been already utilized by previously scheduled jobs 

are set to infinity, to take care of the residual capacities of the resources in their respective time 

periods and sources.  

 

4.4. Branching 

4.4.1. Definition of an integer feasible solution to RMP 

We formally define a feasible integer solution to the RMP.  

Definition 1: Consider a set of columns ݇ א ௝ for job j represented by the basic variables λjܭ
k in 

the RMP, such that ∑ λj
k=1kאKj , which implies Uj=1 (from constraint (17)).   The convex 
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combination θj= ∑ xjorts
k λj

k
kאKj  is a feasible integer solution to the RMP for job j if for any pair of 

operations (oi,oi+1 ){׊i=1,…,|Oj|-1} in ߠ௝, there is no precedence violation.  

 

Consider job j with 3 operations having processing times 6, 10 and 4 hours, respectively. In the 

RMP, suppose we have two schedules corresponding to the basic variables, λj
1=0.45 and λj

2=0.55. 

For an intuitive representation of a schedule a matrix notation is followed, where the rows denote 

the time period t and source s while the columns denote the operations. Suppose the schedules 

corresponding to the basic variables are as shown below. Then the convex combination θj is as 

shown below. 

 

௝ߣ
ଵ֜x

jorts
1 ֜ 

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
4 0 0
0 0 0
2 6 0
0 0 0
0 4 4
0 0 0
0 0 0
0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

t=1,s=1
t=1,s=2 
t=2, s=1
t=2,s=2

ڭ

t=4, s=2

            λj
2 ֜ xjorts

2 ֜  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0
6 0 0
0 0 0
0 8 0
0 2 2
0 0 2
0 0 0
0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

௝ߠ          ൌ ෍ ௝௢௞௥௧ݔ
௞ ௝ߣ

௞
ଶ

௞ୀଵ

֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1.8 0.0 0.0
3.3 0.0 0.0
0.9 2.7 0.0
0.0 4.4 0.0
0.0 2.9 2.9
0.0 0.0 1.1
0.0 0.0 0.0
0.0 0.0 ے0.0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

In θj, none of the adjacent operation pairs have a precedence violation; the processing time 

constraint (3), physical constraint (4) and due-date constraint (7) are satisfied and hence θj is an 

integer feasible solution to RMP for job j. Now consider another basic column λj
3with a 

corresponding schedule given by xjorts
3  and the new solution to RMP is  λj

1=0.15, λj
2=0.35, and 

λj
3=0.5. Then the convex combination ߠ′௝ is given as, 

 

௝ߣ
ଷ ֜ ௝௢௥௧௦ݔ

ଷ ֜  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
6 0 0
0 6 0
0 4 4
0 0 0
0 0 0
0 0 0
0 0 0
0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

௝′ߠ          ൌ ෍ ௝௢௞௥௧ݔ
௞ ௝ߣ

௞
ଷ

௞ୀଵ

֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
3.6 0.0 0.0
2.1 3.0 0.0
0.3 2.9 2.0
0.0 2.8 0.0
0.0 1.3 1.3
0.0 0.0 0.7
0.0 0.0 0.0
0.0 0.0 ے0.0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

In θ'j, operation 1 ends in time period 2, source 1, while operation 2 starts in time period 1, 

source 2. Thus for operation pair (1,2) there is a precedence violation. Similarly for operation 
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pair (2,3) the precedence constraint is violated. Thus θ'j, is an infeasible integer solution to the 

RMP for job j. 

 

4.4.2. Branch-and-Price Strategy 1 (BPS1) 

In the original formulation there are two binary variables Y and U. While branching in B&P 

algorithm the literature suggests to branch on the original variables, instead of branching on the 

variable ߣ in the RMP. From Definition 4.1, we know that to get an integer feasible solution to 

the RMP for job j, Uj should be exactly equal to 1, implying that job j is selected and the 

precedence constraints are satisfied. Hence at any node in the branch and bound tree if Uj is 

fractional, we branch on Uj, setting Uj to 0 in the first (left) child node and Uj to1 in its twin 

(right) node. If at any node in the branch and bound tree, if all Uj’s are either 0 or 1, and their 

corresponding ߠ௝  is integer feasible as per Definition 1, then an integer feasible solution for the 

original formulation can be reported.  

 

In the case that Uj is binary, but θj  is integer infeasible, then the original variable Y has to be 

fixed. Fixing Y variables is not as straight forward as fixing U, since they are not used in the 

RMP. In the original formulation Y is an indicator variable used for ensuring that the linear 

precedence amongst operations is maintained. Whenever θj is fractional all the constraints except 

the precedence constraint of a job are satisfied. In such a case a branching strategy, which 

attempts to balance the solution space on either nodes, is proposed to restore the precedence 

constraints.  

 

A pair of operations (o,o+1) has a precedence violation if operation o+1 starts before the 

completion of operation o. We define this violation in absolute terms as the precedence error ߝ௣
௢ 

for job pair (o,o+1) given by the difference in the end time of operation o and start time of 

operation o+1. Equation (21) computes the precedence error between the violating adjacent pair 

of operations. 

 εp
o=2൫eto-sto+1൯+(eso-sso+1)  (21)  

Where, eto and eso is the time period and source respectively in which operation o is completed, 

while sto+1 and sso+1 is respectively the time period and source in which operation o+1 starts. For 
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the purposes of this research we refer to a particular time period and source combination as time-

source instance.  

 

Let ߠ௝
ᇱ be an integer infeasible solution at node n in the branch and bound tree and all Uj  be 

binary. We try to restore the precedence amongst the violating operation pair with maximum 

precedence error first. Let this pair be denoted by (o,o+1). Consider the illustration in Section 

4.4.1, with schedule  ߠ௝
ᇱ being an integer infeasible solution at some node n in the branch and 

bound tree and all Uj  are binary. Figure 7 shows the schedule generated from this convex 

combination. Operation pair (2,3) has the maximum precedence error (εp
2) of 2 units. Hence we 

select this pair to restore precedence feasibility. 

 

 

Figure 7. Schedule obtained from the convex combination 

In branching strategy 1 (BPS1) for the first child node we place the restriction that operation o 

cannot be scheduled in the time period (eto) and source (eso) in which it had finished its 

processing in schedule θj
' . In the second child node we place the restriction that operation o+1 

cannot be scheduled in the time period (sto+1) and source (sso+1) when it began its processing in 

schedule θj
' . There are no other restrictions on scheduling either these operations or other 

operations.  

 

For the example under consideration, in child node 1 we place the restriction that operation 2 is 

not allowed to be scheduled in regular time (s=1) of the third time period, while in child node 2 
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operation 3 is not to be scheduled during the regular time (s=1) of the second time period. Figure 

8 shows these restrictions on each node using a black colored box.  

 

 

Figure 8. Branching strategy 1 (BPS1) 

4.4.3. Branch and Price Strategy 2 (BPS2) 

BPS1 guarantees an optimal solution. However, it takes a long time to prove optimality (see 

section 5.0). Since one variable is fixed at a time in BPS1, the branch and bound tree can grow 

exponentially. To overcome this problem a B&P heuristic (BPS2) is presented in this section.   

 

For BPS2, unlike in BPS1 instead of fixing a single time period and source in each child node, 

we introduce time windows, during which operations o and o+1 are not allowed to be scheduled. 

This proposed method for fixing original variables gives us an approximate solution; but is 

intended to reduce the computational time. In θj
' , the precedence violation can be viewed as two 

mutually exclusive events. The first is keeping the start time of operation o+1 as is. In that case, 

operation o has to be completely processed by the time period and source in which operation o+1 

has started in θj
' . The second event is that we keep the end time of operation o as is, so in such a 

case the earliest we can start processing operation o+1 is from the time operation o ends.  Thus 

we can create the time windows during which we cannot schedule the two operations. In the first 

child node we place the restriction that operation o cannot be processed after source (sso+1) in 

time period (sto+1), since this is the start time of operation o+1. Also, since we want to keep this 

start time as is, we can have an additional restriction that we cannot process operation o+1 before 

this time/source instance. In the other child node we place a restriction that operation o cannot be 
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scheduled after time period (eto) and source (eso) onwards along with operation o+1 not to be 

scheduled before this time period and source. Hans (2001) has used a similar approach to repair 

precedence violations of the fractional solution by creating three child nodes. Figure 9 shows the 

branching strategy using BPS2. We disallow operations to be processed during certain time 

periods and sources in the sub-problem network by fixing the processing arc costs for the 

corresponding time periods and sources to a large value.  

 

 

 

Figure 9. Branching in BPS2 

4.4.4. Lagrangian bounds 

Column generation process carries out many iterations with very small improvements in 

objective function value of the RMP. Thus it takes relatively longer times to prove optimality of 

the current solution. This is called the “tailing-off” effect. We can reduce this effect by stopping 

the column generation procedure earlier by proving optimality of the current solution. To achieve 

this we provide an upper bound (since the original problem is a maximization problem). If the 

upper bound at a node in the branch and bound tree is less than the best known integer solution 

value then the column generation procedure can be terminated and the node can be fathomed 

without the risk of missing the optimum.  

 

Lasdon (1970) provides a lower bound calculation for the master problem from the current 

objective value and the reduced costs obtained by solving the sub-problems. We follow a similar 
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method, but unlike Lasdon our RMP is a maximization problem and hence the bound which we 

get is in fact an upper bound to the Master Problem (MP). Also, we have an additional variable 

Uj which is non-decomposable; as such it is not a part of the sub-problem solution. We now 

discuss the computation of the upper bound. 

Proposition 1: Given that ZRMP
LP  is the current objective function value of the RMP at optimality, 

then the upper bound to the optimal objective value for the MP is given by 

ZRMP
LP - ൣmin൫∑ ൫min ZSP

j ൯, 0j ൯൧ 

Proof:   

ࢁࢗ  െ ࣅ࢞ࢉ െ ࢈࢝ ൌ ࢁࢗ െ ࣅ࢞ࢉ െ ࣅ࢞࢝ െ ࣅሺࢻ െ   ሻ  (22)ࢁ

ࢁࢗ  െ ࣅ࢞ࢉ െ ࢈࢝ ൌ ࢁࢗ െ ࢉሾሺࣅ ൅ ࢞ሻ࢝ ൅ ሿ ࢻ ൅  (23)  ࢁࢻ

From Equation (20) we know ሺࢉ ൅ ࢞ሻ࢝ ൅ ൌ ࢻ ∑ ሺ݉݅݊ ௌܼ௉
௝ ሻ௝ . Since ݉݅݊ ௌܼ௉

௝  is the reduced cost 

of jth sub-problem, we consider only those that will improve the objective function value of 

RMP, hence ሺࢉ ൅ ࢞ሻ࢝ ൅ ∑can be replaced by ݉݅݊൫ ࢻ ൫݉݅݊ ௌܼ௉
௝ ൯, 0௝ ൯. 

ࢁࢗ  െ ࣅ࢞ࢉ െ ࢈࢝  ൑ ࢁࢗ െ  ∑ ∑ ௝ߣ
௞

௞א௄ೕ௝א௃ ൣ݉݅݊൫∑ ൫݉݅݊ ௌܼ௉
௝ ൯, 0௝ ൯൧ ൅  (24)  ࢁࢻ

Rearranging the terms in Equation (24), we get, 

ࢁࢗ  െ ࣅ࢞ࢉ ൑ ࢁࢗ ൅ ࢈࢝ ൅ ࢁࢻ െ ∑ ∑ ௝ߣ
௞

௞א௄ೕ௝א௃ ൣ݉݅݊൫∑ ൫݉݅݊ ௌܼ௉
௝ ൯, 0௝ ൯൧ . (25) 

The dual objective function value of the RMP is given by ࢁࢗ ൅ ࢈࢝ ൅  which is equal to the ,ࢁࢻ

objective function value of the primal RMP at optimality. We can re-write equation (25) as 

  qU – cxλ ൑ ܼோெ௉
௅௉ ‐ ∑ ∑ ௝ߣ

௞
௞א௄ೕ௝א௃ ൣ݉݅݊൫∑ ൫݉݅݊ ܼௌ௉

௝ ൯, 0୨ ൯൧.   (26)  

 

4.4.5. Node Selection 

Three strategies are implemented for node selection during the branch and bound search process, 

namely, Depth first Search (DFS), Best First Search (BeFS) and a combination of depth first and 

best first strategy (DFS+BeFS). In DFS strategy when exploring a particular node, we form two 

child nodes and select the node with the best bound for exploration. We continue this till we find 

an integer solution and then backtrack to the nodes which are unexplored. In BeFS strategy we 

search for the node with the best bound in the complete B&B tree for exploration. In DFS+BeFS 

strategy we try to combine the first and second strategy. We begin with DFS strategy and after 

finding an integer solution we implement BeFS so as to select an unexplored node having the 

best bound in the B&B tree and again apply DFS. Preliminary experimentation showed that 
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DFS+BeFS strategy performs the best, and hence we use this node selection strategy for further 

experimentation. 

 

4.4.6. Approximation Algorithms for Branch & Price 

The bounds from the decomposition algorithms are generally tighter when compared to the linear 

programming relaxations of the original formulation and typically feasible solutions are 

determined early on in the process. Truncated tree search algorithms may provide very good 

approximations - in truncated tree search algorithms the number of nodes evaluated in the 

solution process is reduced according to some pre-specified scheme (Savelsbergh, 1997).  In the 

approximation algorithm, which we propose, we introduce a optimality tolerance ߛ, such that a 

node is fathomed if ZRMP
LP ≤ሺ1+γሻZIP, where ZIP is the value of the best known integer solution.  

5. EXPERIMENTATION AND RESULTS 

The branch and price algorithm was implemented in C++ using IBM/ILOG Concert technology 

(CPLEX 10.1) for solving the RMP. The experiment was conducted on a Intel Core 2 CPU 6330 

@ 1.86 having 0.97 GB of RAM running Microsoft Windows XP professional system. The 

results of B&P were compared to benchmark problems solved using CPLEX 10.1. For many 

large instances – especially with 8 and 10 jobs, even after running for several hours did not 

converge to optimum. Consequently, the run time of CPLEX was restricted to 1800 sec and the 

best integer solution reported was used for comparison purposes. 

 

The complete experimental setup to assess the solution quality of the B&P algorithm is presented 

in Table 6.  A full factorial experiment was conducted.  For each factor and level combination 

three instances were generated. The number of resources is fixed to 3 for problem instances with 

3 and 5 operations per job, and to 5 for instances with 8 and 10 operations per job. The due-date 

for each job is randomly generated within 60% to 100% of the planning horizon. The regular 

time cost for each resource is randomly generated from a uniform distribution between 20 and 

80. The ratio of regular time to over time cost is 1:1.5. The sales price for each job is decided 

using Equation (27). 
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Table 6. Factors and Levels for Experiment 

Factors Levels 
Number of jobs 3, 5, 8 and 10 
Number of operations 3, 5, 8 and 10 
DC ratio 0.8, 1.0 and 1.2 
Processing time distribution (hours) DU[4,16]  

  

qj= ∑ ௝௢௥ܿ௥,௦ୀଵ݌ כ ሺ1 ൅ ሺ0.7 כ ܷሾ0,1ሿሻሻ௢אை಻   (27) 

We implemented the approximation algorithms for both BPS1 and BPS2 with  ߛ value of 0.01 

and 0.05. For ߛ value of 0.0 we get the original BPS1 and BPS2 strategies. For being concise, we 

represent the name of the branching strategy followed by the optimality tolerance within 

brackets. For example, BPS2(0.01) represents branching strategy BPS2 with an optimality 

tolerance ߛ ൌ 0.01. This convention is followed throughout this section.  

 

Table 7 presents the percentage improvement in solution obtained by various B&P strategies 

over CPLEX. CPLEX performs marginally better than the B&P strategies for instances with 3 

jobs. The solution quality of B&P increases as the number of jobs increase. For 8 job and 10 job 

instances the improvements were at least 35% and 196% respectively.  
Table 7. Improvement over CPLEX 

% improvement over CPLEX 
Jobs Opts. BPS1 BPS2 

ߛ ൌ 0.00 0.01 0.05 0.00 0.01 0.05 
3 3 0.00 0.00 0.00 -0.12 -0.12 -0.12 

5 0.00 -0.05 -0.81 -0.28 -0.36 -0.52 
8 0.00 -0.04 -0.83 -0.13 -0.13 -0.92 

10 -0.04 -0.10 -0.14 -0.09 -0.14 -0.23 
Average -0.01 -0.05 -0.44 -0.15 -0.19 -0.45 

5 3 0.00 0.00 -0.24 -0.07 -0.16 -0.34 
5 -0.13 -0.35 -1.24 -0.18 -0.38 -0.80 
8 -3.24 -3.28 -3.28 0.36 0.31 -0.26 

10 4.43 4.16 3.96 2.36 2.22 1.70 
Average 0.26 0.13 -0.20 0.62 0.50 0.07 

8 3 0.00 -0.04 -1.69 0.00 -0.07 -1.65 
5 1.18 1.09 -0.36 1.48 1.27 -0.23 
8 20.99 20.94 20.51 21.65 21.14 19.52 

10 144.34 140.65 139.81 141.76 141.03 139.44 
Average 38.69 37.80 36.70 38.35 37.98 36.41 

10 3 0.00 -0.07 -0.69 0.00 -0.05 -0.76 
5 1.35 1.28 0.12 1.47 1.46 -0.22 
8 52.13 51.70 50.58 51.78 51.64 50.91 

10 1178.07 1178.07 1175.39 1200.37 1199.62 1170.61 
Average 199.11 198.95 197.72 202.53 202.36 196.95 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

29 
 

Table 8 presents the computation runtime to solve the various problem instances by the different 

B&P strategies. BPS1(0.0) takes the most time to solve the problems. When the number of 

operations are less (i.e. 3 and 5) BPS2(0.0) is faster than BPS1(0.0) and BPS1(0.01), but as the 

number of operations increase BPS1(0.01) is faster than BPS1(0.0). The approximation 

algorithms with optimality tolerance of 0.05 are much faster than any other, while BPS2(0.05) 

performs the best in terms of runtime. Since BPS1(0.0) is slowest, we compute the reduction in 

runtime achieved by using the other approximate B&P strategies. The results are shown in Table 

9. For 10 job problems BPS2(0.05) can show on an average 81% reduction in runtime over 

BPS1(0.0). As seen from the improvements made over CPLEX, BPS2(0.05) makes 196% 

improvement as opposed to BPS2(0.0) which makes 202.53% but at a much lesser computation 

overhead. This shows that the approximation algorithms are a viable alternative to the exact 

procedure. 

Table 8. Runtime analysis of Branch and Price 

Runtime in seconds 
Jobs Opts. BPS1 BPS2 

ߛ ൌ 0.00 0.01 0.05 0.00 0.01 0.05 
3 3 0.33 0.03 0.03 0.03 0.03 0.03 

5 4.33 0.87 0.16 0.15 0.13 0.10 
8 0.54 0.34 0.30 0.18 0.14 0.09 

10 102.08 100.68 0.90 0.94 0.71 0.60 
Average 26.82 25.48 0.35 0.32 0.25 0.20 

5 3 0.32 0.16 0.16 0.10 0.09 0.08 
5 210.50 102.33 0.70 0.56 0.41 0.31 
8 483.20 403.18 102.94 14.02 5.83 1.69 

10 800.67 633.56 205.96 360.15 308.88 110.18 
Average 373.67 284.81 77.44 93.71 78.80 28.07 

8 3 0.89 0.82 0.31 0.34 0.29 0.16 
5 502.71 204.83 4.32 122.79 102.27 1.74 
8 900.45 802.12 145.02 807.37 711.64 155.66 

10 900.38 900.94 301.34 900.64 755.10 254.47 
Average 566.84 465.07 107.36 445.13 381.96 98.68 

10 3 101.87 101.88 1.62 0.94 0.65 0.41 
5 408.61 33.88 16.63 21.73 7.40 4.28 
8 900.43 639.28 180.69 900.34 805.50 81.14 

10 900.76 780.15 487.35 900.81 900.95 391.71 
Average 537.56 339.88 132.10 400.34 369.59 85.35 

 

Finally we present the maximum number of columns generated (refer to Table 10), and 

maximum branch and bound nodes generated (refer to Table 11) for the different number of jobs 

and operations. This information is helpful to analyze the size of the branch and bound tree, the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

30 
 

effectiveness of the sub-problem solution approach and the memory requirements for the 

solution approach. We do not see a clear pattern as regards to the columns generated and the 

problem size. But for high number of jobs and operations per job, the number of columns 

generated by BPS2 is more than BPS1. The maximum number of columns generated were for a 5 

job 8 operation problem by BPS2(0.01).  

Table 9. Reduction in runtime 

%age reduction in runtime 
Jobs Opts. BPS1 BPS2 

0.01 0.05 0.00 0.01 0.05 
3 3 22.74 22.81 30.35 25.17 13.27 

5 13.68 28.77 24.52 29.80 40.39 
8 -40.30 7.29 10.64 15.22 14.33 

10 21.74 34.38 31.52 32.51 35.52 
Average 4.46 23.31 24.26 25.67 25.88 

5 3 6.04 1.92 37.03 41.05 49.65 
5 25.25 40.97 62.46 66.31 66.00 
8 30.43 70.58 88.68 90.31 91.33 

10 24.34 71.89 50.86 59.82 84.45 
Average 21.52 46.34 59.76 64.37 72.86 

8 3 6.81 47.95 48.31 54.39 67.85 
5 32.78 69.73 67.94 70.33 87.30 
8 10.92 83.89 10.34 20.97 82.71 

10 -0.06 66.53 -0.03 16.13 71.74 
Average 12.98 67.04 32.55 41.15 77.56 

10 3 -0.13 26.91 70.54 66.53 81.05 
5 41.58 54.30 79.57 81.27 87.19 
8 29.00 79.93 0.01 10.54 90.99 

10 13.39 45.90 -0.01 -0.02 56.50 
Average 21.91 52.49 42.22 44.53 81.74 

 

The number of nodes in the branch and bound tree are lesser in BPS2 as compared to BPS1, 

which makes intuitive sense because in BPS2, a set of original variables are fixed to zero based 

on the concept of time windows, as compared to BPS1, where only one original variable is fixed 

at a time. Also the overhead of traversing the branch and bound tree to set the columns at each 

node in the branch to zero which violates the current restrictions is much more when the number 

of nodes in the branch and bound is more and hence the increase in computational time.  
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Table 10. Number of columns generated in B&P 

Maximum number of columns generated 
Jobs Opts. BPS BPS2 

ߛ ൌ 0.0 0.01 0.05 0 0.01 0.05 
3 3 41 41 41 81 81 81 

5 1713 396 348 316 231 268 
8 851 851 376 498 447 253 

10 50546 49085 1064 2631 1350 400 
5 3 9370 2972 388 437 379 191 

5 61797 68180 808 1197 500 412 
8 64480 62893 2904 61562 83342 2423 

10 64747 15366 7588 20085 6646 3851 
8 3 1891 1172 1083 642 447 287 

5 64786 66269 48435 16900 7873 1614 
8 67009 65031 51689 74524 77517 71755 

10 63420 55750 44805 73850 76483 47446 
10 3 51436 53432 1560 2321 1874 1536 

5 61202 63623 65702 67678 68219 70360 
8 59340 62094 54651 66367 65360 67664 

10 50688 52075 27938 61918 65165 63451 
 

Table 11. Size of branch and bound tree in B&P 

Maximum nodes formed in the branch and bund tree 

Jobs Opts. BPS BPS2 
ߛ ൌ 0.0 0.01 0.05 0 0.01 0.05 

3 3 15 15 15 19 19 19 
5 2327 691 85 49 37 19 
8 213 111 103 67 43 23 

10 6239 6097 135 161 127 99 

5 3 325 75 95 43 33 35 
5 14627 6541 109 89 43 27 
8 9111 9057 9105 809 353 97 

10 6589 5245 4283 3557 3065 2027 

8 3 261 261 161 67 57 31 
5 10845 11225 389 4161 4699 143 
8 5455 4179 2797 4725 2861 1541 

10 3939 3081 3047 3055 2865 1665 

10 3 13921 13969 319 253 141 41 
5 9411 1771 849 959 321 209 
8 4915 5163 2555 2997 2903 1253 

10 3377 2233 2211 1981 1649 1061 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

32 
 

6. CONCLUSIONS AND FUTURE WORK 

Integrating order acceptance and capacity planning provides tremendous opportunities to 

maximize the operational profits of make-to-order operations. This is done by selectively 

accepting jobs from the available pool of customer orders and simultaneously planning for their 

capacity. This integrated problem is difficult to solve and many researchers have tried to simplify 

the problem by planning for the bottleneck machines and solving the problem as a single 

machine problem. But in reality, the bottleneck is floating as it depends on the orders which are 

selected. Furthermore, capacity is not fixed since it can be extended by considering overtime and 

outsourcing, which might be beneficial for improving the profits. Non-regular capacity has not 

been considered in any of the previous work done in the area of MTO order acceptance problem. 

In this paper we propose a Mixed-Integer Linear Program (MILP) to model MTO as a job shop 

with multiple resources and recirculation. We consider regular capacity (regular shift) and non-

regular capacity (overtime shift). The MTO operation receives customer orders or jobs each with 

a number of operations having linear precedence relationship. Using the model we illustrated that 

integrating the two decisions of order acceptance and capacity planning can achieve our goal to 

maximize the operational profits. Typically order acceptance problems are solved on a daily 

basis for short term capacity planning with a rolling planning horizon of 3 to 4 weeks. Hence the 

solution approach to this integrated problem should be quick such that the decision maker can 

use it frequently not only to find the optimal set of orders and to allocate capacity but also to 

explore various other scenarios that would help in negotiating order due-dates and prices while 

better aligning with the firm’s long-term business strategy. To efficiently solve this model we 

propose an exact branch and price algorithm (BPS1). We present Lagrangian bounds for 

fathoming the nodes in the branch and bound tree. We further improve the runtime of the 

solution approach by developing an approximate branching scheme (BPS2). We combine BPS1 

and BPS2 with various approximation algorithms for truncating the branch and bound tree.  

 

We show through experiments that the BPS1 and other approximation schemes perform better 

than the solution provided by the commercial solver, and can solve problems of sizes which are 

typically found in real-life applications. Figures 10 and 11 graphically summarize the 

improvements made by B&P algorithms and the computational runtime of various solution 

approaches discussed in this paper. We observe that B&P performs 200% better than the results 
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obtained from solving the MILP at a much lesser computational overhead as compared to a 

commercial solver. BPS2(0.05) can solve, on an average, 10 jobs problems in 85 seconds and 

making 196% improvements over CPLEX.  Thus B&P algorithms are faster and solve problems 

in reasonable time, and they can be utilized in a decision support system on a daily basis to help 

make intelligent decisions in a MTO operation. 

 

 

Figure 10. Average improvement in solution quality 

 

 

Figure 11. Runtime for various solution approaches 

3 jobs 5 jobs 8 jobs 10 jobs

BPS1 -0.01 0.26 38.69 199.11
BPS1 0.01 -0.05 0.03 37.80 198.95
BPS1 0.05 -0.44 -0.20 36.70 197.72
BPS2 -0.15 0.62 38.35 202.53
BPS2 0.01 -0.19 0.50 37.98 202.36
BPS2 0.05 -0.45 0.07 36.41 196.95
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The problem under consideration is a basic problem found in many industrial settings. The 

model and solution proposed lay the foundation for other more complex problems of practical 

interest having variations to this basic one. For example, we consider non-regular capacity as 

overtime, but some make-to-order operations consider outsourcing options extensively. 

Integrating outsourcing is another important variation to the problem we have considered. 

Instead of having orders with a simple deliverable, many MTO operations handle orders that 

consist of product assemblies made of smaller sub-assemblies. Hence, their precedence relations 

are non-linear though each sub-assembly may still have linear precedence amongst its own sub-

operations or tasks. 
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