
 Elsevier Editorial System(tm) for European Journal of Operational Research
 Manuscript Draft

Manuscript Number:

Title: A Branch and Price Solution Approach for Order Acceptance and Capacity Planning in Make-to-
Order Operations

Article Type: Theory and Methodology Paper

Section/Category: Manufacturing

Keywords: Order Acceptance, Branch-and-Price, Capacity Planning, Make-to-Order Operations, and
Large-Scale Optimization.

Corresponding Author: Prof. Purushothaman Damodaran, PhD

Corresponding Author's Institution: Northern Illinois University

First Author: Siddharth Mestry, M.S.

Order of Authors: Siddharth Mestry, M.S.; Purushothaman Damodaran, PhD; Chin-Sheng Chen, PhD

Abstract: Make-to-order (MTO) operations have to effectively manage their capacity to make long-term
sustainable profits. This objective can be met by selectively accepting available customer orders and
simultaneously planning for capacity. We model a MTO operation of a job-shop with multiple resources
having regular and non-regular capacity. The MTO firm has a set of customer orders at time zero with
fixed due-dates. The process route, processing times, and sales price for each order are all given. Since
orders compete for limited resources, the firm can only accept some orders. In this paper we formulate
a Mixed-Integer Linear Program (MILP) to aid an operational manager to decide which orders to
accept and how to allocate resources such that the overall profit is maximized. A branch-and-price
algorithm is devised to solve the MILP effectively. The MILP is first decomposed into a master problem
and several sub-problems using Dantzig-Wolfe decomposition. Each sub-problem is represented as a
network flow problem and an exact procedure is proposed to solve the sub-problems efficiently. We
also propose an approximate branch-and-price scheme, Lagrangian bounds, and approximations to
fathom nodes in the branch-and-bound tree. Computational analysis shows that the proposed branch-
and-price algorithm can solve large problem instances with relatively short time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(815) 753‐6748
pdamodaran@niu.edu

November 2, 2009

Dear Editor,

We are submitting our manuscript entitled "A Branch and Price Solution
Approach for Order Acceptance and Capacity Planning in Make‐to‐Order
Operations" for review and publication in European Journal of Operational
Research.

The problem under study can be observed at several manufacturing facilities. The
co‐authors have personally interacted with several make‐to‐order firms. The
model and the solution proposed in this paper can benefit industry and stimulate
academic research to consider several extensions of this problem.

We hope you will find this paper and its contribution worthy to publish in your
journal. If you need additional information with regards to the manuscript, please
write to me. I look forward to hearing your comments and the reviewers’
comments/suggestions on our manuscript.

Sincerely,

Purushothaman Damodaran

Department of Industrial and Systems Engineering
Northern Illinois University
De Kalb, IL 60115

Cover Letter
Click here to view linked References

http://ees.elsevier.com/ejor/viewRCResults.aspx?pdf=1&docID=12167&rev=0&fileID=91374&msid={66633790-4C41-45A9-85AA-093BA3067AB6}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1

A Branch and Price Solution Approach for Order Acceptance and Capacity Planning

in Make-to-Order Operations

Siddharth Mestry1, Purushothaman Damodaran2*, Chin-Sheng Chen1

1 Department of Industrial and Systems Engineering,
Florida International University, Miami, FL.

2 Department of Industrial and Systems Engineering,
Northern Illinois University, DeKalb, IL.

* Corresponding author: pdamodaran@niu.edu; (815) 753-6748.

ABSTRACT

Make-to-order (MTO) operations have to effectively manage their capacity to make long-term

sustainable profits. This objective can be met by selectively accepting available customer orders

and simultaneously planning for capacity. We model a MTO operation of a job-shop with

multiple resources having regular and non-regular capacity. The MTO firm has a set of customer

orders at time zero with fixed due-dates. The process route, processing times, and sales price for

each order are all given. Since orders compete for limited resources, the firm can only accept

some orders. In this paper we formulate a Mixed-Integer Linear Program (MILP) to aid an

operational manager to decide which orders to accept and how to allocate resources such that the

overall profit is maximized. A branch-and-price algorithm is devised to solve the MILP

effectively. The MILP is first decomposed into a master problem and several sub-problems using

Dantzig-Wolfe decomposition. Each sub-problem is represented as a network flow problem and

an exact procedure is proposed to solve the sub-problems efficiently. We also propose an

approximate branch-and-price scheme, Lagrangian bounds, and approximations to fathom nodes

in the branch-and-bound tree. Computational analysis shows that the proposed branch-and-price

algorithm can solve large problem instances with relatively short time.

Keywords: Order Acceptance, Branch-and-Price, Capacity Planning, Make-to-Order Operations,

and Large-Scale Optimization.

Text Only Including Abstract/Text + Figs + Tables
Click here to view linked References

http://ees.elsevier.com/ejor/viewRCResults.aspx?pdf=1&docID=12167&rev=0&fileID=91373&msid={66633790-4C41-45A9-85AA-093BA3067AB6}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2

1. INTRODUCTION

1.1. Background

The focus on innovation and customer satisfaction has led to shortened product development life

cycles and mass customization, compelling the manufacturers to remain agile and flexible. These

factors have contributed to an increase in the popularity of make-to-order (MTO) operational

philosophy (Jalora, 2006). MTO firms are process-focused, as the products manufactured share

the same kind of operations but differ in the design details making them efficient not only for

unique product manufacturing but also for producing greater product variety at lower cost

(Gallien et al., 2004). This policy allows a high degree of operational flexibility and the products

manufactured are one of a kind or in small batches. It is advantageous when the end product is

customer specific with high component-level customization unique to each customer. A MTO

firm starts working on an order only after it has been placed by the customer. Typical examples

of MTO operations are found in engineering tooling, industrial boilers, chemical equipment,

construction, and general engineering/contracting industries (Chen, 2006).

MTO is characterized by back orders with zero inventories as each customer order is unique and

cannot be manufactured in advance. The only way to make sustainable profits is by managing the

customer demands which is achieved by effectively and efficiently using available capacity.

Because the main driver in MTO operations is customer orders, it is vital to coordinate

operations and sales functions for effective use of available resources by managing the demand

placed on the system (Mehmet and Sridharan, 2005). In practice, decisions on order acceptance

and production planning are often functionally separated. The objective of the sales department

is to bring as much revenue as possible. The sales department thus will tend to accept all orders,

regardless of the available capacity, because its goal is to maximize the sales revenue.

Manufacturing on the other hand, is concerned with limited capacity and tries to maximize

resources utilization, while minimizing the number of tardy deliveries. Without effective

coordination and look-forward mechanisms, order acceptance decisions are often made without

involving production department or with incomplete information on the available capacity

(Slotnick and Morton, 2007). Accepting each available order is the tendency of the sales

department, which often leads to an over-loaded production system, making it difficult to meet

deadlines and other delivery commitments. To deal with this short-term capacity problem,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3

management usually relies on additional non-regular capacity like overtime and outsourcing,

thereby increasing its costs. This may lead to lower profit margins or even negative profits.

Tardy deliveries may lead to penalty costs and possibly loss of customer goodwill (Ebben et al.,

2005, Slotnick and Morton, 2007).

While negotiating contracts in a MTO environment, the company can either adjust the price or

lead time for an order. If the order has non-negotiable tight due-dates, the MTO firm can charge

a premium for accepting that order as it might have to be expedited with the use of non-regular

capacity. Recent experience of firms such as Amazon.com, however, indicates that customers

may be unwilling to accept dynamic pricing as fair (Streitfeld, 2000). An alternative to dynamic

pricing would be to view the issue as one of allocating capacity between competing orders,

making it a capacity allocation problem. With multiple orders, each providing a different profit

contribution, the capacity allocation problem becomes an order acceptance or refusal problem

(Harris and Pinder, 1995; Barut and Sridharan, 2004).

1.2. Problem Description

A make-to-order operation in a job shop environment is considered in this research. The MTO

firm has a set of bids or customer orders to consider. A customer order is referred to as jobs in

the context of this research. The decision to be made is which customer order to accept and how

to schedule it in order to maximize the profit and to fulfill the accepted orders by the due date.

Both decisions should be made simultaneously, otherwise an order may be accepted but the

available residual capacity may not permit on-time delivery.

Each customer order has a set of operations to be processed with linear precedence constraint

and deterministic processing times, a fixed due-date, and a known sales price. No tardy

deliveries are allowed. There are multiple types of resources. Each resource type has one or more

machines. Furthermore, job recirculation is allowed, which means that the jobs can visit the same

resource more than once. The cost of using a resource depends on its source. The objective

considered is to maximize the operational profit over a planning horizon considering only the

sales price and the manufacturing costs by accepting a subset of customer orders. The planning

horizon is discretized into time buckets of equal length know as time periods. Without loss of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

generality we assume that each time period is one day. Furthermore each day is divided into two

capacity sources viz. regular time and overtime. Overtime is usually considered more expensive.

The decision of accepting or rejecting the orders is done at the beginning of the day. Figure 1

shows a schematic representation of a typical order acceptance problem in a job shop

environment functioning under a MTO operation mode.

Figure 1. Customer order processing in a job shop-MTO operation

 The job shop used for illustration purpose has three resources. Resource 1 has two machines of

the same type, while resources 2 and 3 each have a single machine. There are three orders, each

having a known sales price and a fixed due date. Each order has a different process route with

deterministic processing times. For example, the process route for customer order 1 is Resource

1 → Resource 2 → Resource 3. The order acceptance and capacity planning process is to decide

which order to accept at the current decision time, and the number of hours for which each

resource has to be assigned in each time period and source to each of the accepted jobs, while

considering all the constraints stated in the problem description.

The primary objective of this research is to formulate the MTO problem under study and develop

solution approaches which can solve large problem instances effectively and efficiently. The

problem under study is modeled as a Mixed-Integer Linear Program (MILP). However, the

proposed MILP takes prohibitively long runtimes for solving problems with more than 5 jobs as

illustrated in Section 3.3. In order to use the proposed model in practice it is important to device

efficient solution methodologies. Since the proposed MILP inherits the block diagonal structure,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5

Dantzig-Wolfe decomposition procedure is applied to decompose the MILP into a master

problem and several sub-problems (one sub-problem for each customer order). Later a branch-

and-price (B&P) algorithm is proposed for solving the proposed MILP.

The rest of this paper is organized as follows. Section 2 reviews relevant literature. Section 3

presents a formal definition of the problem and a mathematical model along with its assumptions

and limitations. Section 4 proposes an exact and approximate B&P algorithm to solve the

problem under consideration and various approximation schemes for exploring the branch and

bound tree. The experimentation and computational results are presented in Section 5, with

concluding remarks and future extensions given in Section 6.

2. LITERATURE REVIEW

Order acceptance in manufacturing is closely related to the principles of revenue management

(RM) which is commonly used in the service industry for order acceptance and refusal process,

with differential pricing, capacity reallocation and overbooking (Harris and Pinder, 1995). There

has been an emerging interest in applying RM to the manufacturing industry for both MTO and

make-to-stock (MTS) operations. In MTO, the decisions of order acceptance, lead-time or due

date quotation, pricing and capacity planning are closely related. In the absence of differential

pricing, RM becomes a capacity allocation and order acceptance problem. Order acceptance in

MTO can be broadly classified by static and dynamic arrivals of customer orders. The problem

under study falls in the category of static arrival of customer orders. Section 2.1 focuses on the

static arrivals. Section 2.2 focuses on the applications of column generation technique, especially

in the area of scheduling.

2.1. Order acceptance with static arrivals

Within the operational domain of job shop planning with static customer arrivals, job selection

has been a topic of growing interest. The problem of selecting and ordering job elements from a

given set so as to optimize an objective function was considered by Bahram et al. (2001). They

present a generalization of the best-in rule that in many cases can solve the problem while the

best-in rule does not.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6

Slotnick and Morton (1996) examine a set of trade-offs that can arise if a manufacturing facility

has more potential work than it can handle easily. They formulate a one-machine model with

static arrivals, fixed processing times, due dates and profits. The objective function maximizes

total net profit, which is the sum of the revenues of all jobs minus weighted lateness penalties, by

selecting a subset of jobs. Ghosh (1997) proves that the Slotnick and Morton (1996) version of

the job selection problem is NP-Hard. He also proposed two dynamic programs.

In an extension to Slotnick and Morton (1996), Herbert and Slotnick (2002) examine the

profitability of job selection decisions over a number of periods when current orders exceed

capacity with the objective of maximizing profit and when rejecting a job will result in no future

jobs from that customer. The firm processes jobs, over a number of time periods (stages) within a

given time horizon. The firm has several customers at the beginning of the first period; each

customer submits one job at each stage, until one of the jobs is rejected. Each job has pre-

determined revenue, and the firms pay back a discount to customers whose jobs are completed

past a pre-determined due-date; customers are willing to pay a premium for early delivery. Each

job has a known processing time and importance. The importance of the job is the weight

assigned to it for calculating the lateness penalty. This weight allows the firm to indicate that

certain jobs may have importance beyond their immediate profit. The firm has the option of

rejecting any job. If a job is rejected, the customer is lost (i.e. it never sends another job to be

processed within the planning horizon).

Slotnick and Morton (2007) model a manufacturing facility that considers a pool of orders, and

chooses for processing a subset that results in the highest profit. In addition to the problem

characteristics in Slotnick and Morton (1996) they consider customer weight. The objective is to

maximize profit, which is the sum of per-job revenues minus total weighted tardiness. They

propose two approaches: separation of sequencing and job acceptance decisions, utilizing a

property of the problem that is exploited to good advantage in the analogous problem with

weighted lateness and a joint consideration of sequencing and acceptance, using relaxation. They

state that the joint approach is far superior to the first. Rom and Slotnick (2009) also propose a

genetic algorithm (GA) to solve the order acceptance problem with tardiness penalties.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

7

2.2. Applications of column generation in scheduling

Column generation has been successfully used in job scheduling for common due date (Van den

Akker et al., 1997), parallel machines (Van den Akker et al., 1999a), and single machines (Van

den Akker et al., 1999b, 2000). For a detailed taxonomy of the column generation literature we

refer to Wilhelm (2001). Hans (2001) developed a B&P loading method that is an exact approach

for solving the pre-emptive resource loading problem. The objective is to generate a schedule for

each order, such that the total costs of the required non-regular capacity and the tardiness

penalties are minimized.

This research considers an order acceptance problem in multi-resource job shop environment

with regular and non-regular capacity and static customer arrivals. The only research which

tackles a multi-resource job shop problem is by Ebben et al. (2005); but they do not consider

non-regular capacity (overtime) and the customer arrivals are dynamic. A MILP formulation is

proposed for the problem under study, its structure is studied and later exploited to develop a

B&P algorithm to solve large problem instances of practical interest. To the best of our

knowledge the B&P approach has never been used for order acceptance; although Hans (2001)

has developed a B&P resource loading (BPRL) approach for scheduling orders which have

already been selected. Ebben et al. (2005) use the BPRL technique in their simulation for

scheduling the already accepted orders.

Table 1 summarizes the literature related to the proposed problem under study. The table

compares and contrasts the literature reported on problems similar to the problem under study. It

is evident from this table that the proposed problem and the solution approach are different from

what is reported in the literature so far.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8

Table 1. Summary of relevant literature and contribution of proposed research

Research Objective
Order

Acceptance

Multiple

Resources

Non-regular

Capacity

Fixed

Due-dates

Solution

Approach

Hans, 2001
Minimize non-regular
capacity costs and
tardiness penalties

No Yes Yes No Branch and
Price

Slotnick and
Morton, 1996 Maximize Profit Yes No No No Heuristic

Slotnick and
Morton, 2007 Maximize Profit Yes No No No Branch and

Bound
Lewis and
Slotnick, 2002 Maximize Profit Yes No No No DP, Heuristic

Proposed
Research Maximize Profit Yes Yes Yes Yes Branch and

Price

3. PROBLEM DEFINITION

3.1. Mathematical formulation

The MTO operation is modeled as a job shop with multiple resources ሼݎ א ܴሽ. Each resource

type r can have multiple machines. A finite planning horizon is considered which is discretized

into equal interval time periods ሼݐ א ܶሽ. Without loss of generality we assume that each time

period is one day. Furthermore each day is divided into sources ሼݏ א ܵሽ viz. regular time and

overtime. The length of each source s in time period t is given by lts and is assumed to be eight

hours, but can be varied according to the need. The available capacity of resource r in source s of

time period t is denoted by brts. The MTO firm receives a set of customer orders or jobs ሼ݆ א .ሽܬ

Each job j has a set of operations ൛݋ א ௝ܱൟ with a processing time pjor on resource r, a fixed due

date dj and a sales price qj. Each job can follow different processing route and the operations

have a linear precedence relationship. The cost of using a resource r in each source s is

represented in unit cost per hour crs. Overtime is usually considered more expensive. The

objective is to maximize the profit of the MTO operation by selectively accepting the customer

orders and planning for their capacity within the planning horizon, such that the accepted orders

are completed before their due dates.

The decision variables used in the model are:

Xjortsൌ hours of operation o of job j processed on resource r in source s of period t

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

9

Yjorts= ൜1, if operation o of job j is processed on resource r in source s of period t
0, otherwise

Uj= ൜ 1, if job j is selected or accepted
 0, otherwise

The mathematical formulation proposed for the problem under study is presented below.

Maximize Z= ෍ qjUj
jאJ

- ෍ ෍ ෍ ෍ ෍ crsXjorts
sאStאTrאRoאOjjאJ

 (1)

subject to

෍ ෍ Xjorts
oאOjjאJ

≤ brts ׊rאR,tאT,sאS (2)

෍ ෍ Xjorts= pjorUj
tאTsאS

R (3)אOj,rאJ,oאj׊

෍ ෍ Xjorts≤ lts
rאRoאOj

S (4)אT,sאJ,tאj׊

Xjorts≥ τYjorts ׊jאJ,oאOj,rאR,tאT,sאS (5)

Xjorts≤ pjorYjorts ׊jאJ,oאOj,rאR,tאT,sאS (6)

෍ tYj|Oj|rts
rאR

≤ djUj ׊jאJ,tאT,sאS (7)

෍ ෍ Xjሺo-1ሻrt's'

t-1

t'=1s'אS

+ ෍ Xjሺo-1ሻrts'

s

s'=1

≥ pjሺo-1ሻr ෍ Yjor'ts
r'אR

 ,TאR,tאOj\ሼ1ሽ,rאJ,oאj׊

sאS\ሼ|S|ሽ

(8)

෍ ෍ Xjሺo-1ሻrt's≥ pjሺo-1ሻr ෍ Yjor'|S|t
r'אR

t

t'ൌ1sאS

T (9)אR,tאOj\ሼ1ሽ,rאJ,oאj׊

Xjorts≥ 0 ׊jאJ,oאOj,rאR,tאT,sאS (10)

Yjortsאሼ0,1ሽ ׊jאJ,oאOj,rאR,tאT,sאS (11)

Ujאሼ0,1ሽ ׊jאJ (12)

Objective (1) is formulated to maximize the total net profit over the planning horizon. The first

term in the objective function is the total revenue and the second term is the total labor or

manufacturing cost. Constraint set (2) ensures that the capacity of resource r of source s in time

period t is not violated. Constraint set (3) ensures that adequate resources are allocated to process

operation o of job j. The total number of hours allocated to process an operation should be equal

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10

to its processing time. The equality (=) in constraint (3) can be replaced with an inequality (≥).

The second term in the objective will prevent allocating more resources than what is required.

Constraint set (4) ensures that each operation of a job is processed for no more than lts hours in

each source during each time period. If the processing time of operation o is less than lts, then it

is possible to start processing the next operation (o+1) in the same time period. Since operation

(o+1) cannot be started before operation o, the remaining time available for operation (o+1) in

period t is only (lts-pjor). Consequently, the total time allocated to process job j in any time

period cannot exceed lts hours. The constraint sets (5) and (6) set the Yjorts decision variables to

either 1 or 0. It takes a value of 1 when Xjorts > 0, indicating that operation o of job j is scheduled

for processing on resource r of source s in time period t; otherwise it takes a value of 0. The Yjorts

variables are used to ensure the precedence relationship. The parameter τ in constraint (5)

indicates that whenever an operation is processed on a resource it should be processed for at least

τ units of time. The constraint set (7) ensures that when an order for a job is accepted, the

completion time of the last operation of that order does not exceed the order due date.

The next two constraints impose precedence restrictions. Constraint set (8) ensures that

operation o of job j can be processed in period t during regular hours only after completing

operation (o-1). The first term in constraint (8) represents the total number of hours allotted to

process operation (o-1) in time periods 1,…,(t-1). It includes both the regular time and overtime

hours allocated to process operation (o-1) in each time period up to and including (t-1). The

second term in constraint (8) represents the number of hours allocated to process operation (o-1)

in time period t during regular hours. The constraint set (9) ensures that operation o of job j can

be processed in period t during overtime only after completing operation (o-1). Constraint sets

(10) – (12) impose the non-negativity restrictions on the decision variables. In particular, the

constraint sets (11) and (12) impose the binary restrictions on the decision variables Y and U.

3.2. Decision support using the proposed model

The model proposed in the previous section can help the operations manager/decision maker to

determine which subset of incoming customer orders should be selected to maximize profits. It

can be integrated into a decision support system which can be used to make decisions on day-to-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

11

day basis for selecting customer orders and planning for their capacity such that they are

completed before their due dates. This is useful to carefully plan for the resources used in

overtime hours. The model can be run at the beginning of each decision period, such that the

operations manager can reserve capacity for already accepted orders and determine which new

orders to accept. In situation where a particular order(s) have to be selected for strategic reasons,

a corresponding subset of order(s) that will maximize the profits can also be determined. The

model is also useful to reschedule the already accepted orders when new orders have to be

accepted. We present an example to illustrate how the user can utilize this model.

Consider a job shop with 3 resources having a pool of three customer orders namely jobs 1, 2

and 3 at the start of time period 1. Table 2 shows the characteristics of these three customer

orders. The cost of using each resource in different sources namely, regular time (RT) and

overtime (OT) are given in Table 3. It is assumed that regular production time and overtime is 8

hours each. The decision maker has to decide which jobs to accept and how to schedule the

accepted jobs such that they are processed before their due date. The objective is to maximize

total profit. The MILP model for the example problem is solved using the commercial MILP

solver CPLEX to determine the optimum solution. The optimum profit is $570 when customer

orders 2 and 3 are accepted and the corresponding capacity plan is shown in Figure 2(a). Now

consider that at the start of time period 2 two more orders (for jobs 4 and 5) are received, which

have to be delivered by time period 4. Table 4 shows the characteristics of these two new orders.

Table 2. Customer orders available at time zero

Customer
Order
(Job j)

Sales Price
(qj)

Due Date
(dj)

Operation
(oj)

Resource
(r)

Processing
Time
(pjor)

1 $800 2 1 1 10
2 3 8

2 $950 3
1 1 8
2 2 6
3 2 12

3 $1560 3
1 1 10
2 2 8
3 3 12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12

Table 3. Resource cost ($/hr) for each source

Resource # (r) Regular time (RT) cost
($/hr)

Overtime (OT) cost
($/hr)

1 40 60
2 20 30
3 30 45

Table 4. Customer order available at time one

Customer
Order
(Job j)

Sales Price
(qj)

Due Date
(dj)

Operation
(oj)

Resource
(r)

Processing
Time
(pjor)

4 $400 4 1 2 8
2 3 6

5 $800 4
1 1 8
2 3 8
3 2 6

The decision maker would like to know whether or not to accept these orders as some of the

resources have already been reserved to process orders for jobs 2 and 3 at the beginning of the

first time period. When the mathematical model was solved with the new information, job 5 was

chosen. The capacity planned for jobs 2 and 3 in period 1 cannot be changed, however the

capacity allocated can be altered for the subsequent time periods. The model revises the capacity

for job 2 and job 3 in periods 2 and 3 so as to optimally process job 5. The new capacity plan is

shown in Figure 2(b). When jobs 2 and 3 were initially accepted the model prescribed a profit of

$200 and $370, respectively. After job 5 was accepted, the profit of job 2 was reduced to $150,

but by accepting job 5 the overall profit was increased to $770.

Figure 2. Capacity plan for accepted orders at start of period 1 and 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13

3.3. Computational runtime analysis

The commercial solver CPLEX was used to experiment with the model proposed. CPLEX uses a

branch and bound approach to fix the fractional variables to integer values. Consequently, it may

not be able to solve problem instances with large number of integer variables in reasonable time.

An experimental study (Experiment A) was conducted to determine the effect of problem size on

the run-time (computation time) required to find an optimal solution. Various factors determine

the size of the problem, namely, the number of customer orders or jobs, number of operations for

each job, the number of resources, due dates for each job and the planning horizon. We introduce

a demand-to-capacity ratio (DC ratio) to control the load on the MTO shop-floor. The DC ratio is

the ratio of the demand to the regular time capacity available in the MTO operation given by

equation (13), over the planning horizon with |T| time periods. If the total demand and the

available resources are known, problem instances can be generated by computing the number of

time periods required for a fixed DC ratio using equation (14).

 DC Ratio=
∑ ∑ ∑ ௣ೕ೚ೝroאOjjאJ

∑ ∑ brt,sൌ1tאTrאR
 (13)

 Number of Time Period ሺ|T|ሻ= ඄
∑ ∑ ∑ pjorrאRoאOjjאJ

|R|*lt,s=1*(DC ratio)
ඈ (14)

Table 5 presents the data used for Experiment A. Number of jobs and numbers of operations for

each job are the two factors which are varied. The length of each source was fixed to 8 hours.

For a DC ratio of 1.0 with different levels for jobs and operations, the planning horizon varied

from 3 to 17 time periods. For each combination of the factor and level, three instances were

randomly generated. The due date for each job was equal to the planning horizon computed for

that problem instance. The ratio of regular time to overtime cost was kept constant at 1:1.5. The

runtime to solve the model to optimality was reported. Figure 3 shows the runtime in seconds

against the number of operations per job for 3 job and 5 job instances. In two instances for 5 jobs

with 8 operations, CPLEX was not able to find an optimal solution even after running for more

than 16 hours; hence for those instances the optimality gap is reported in Figure 3.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14

Table 5. Data for Experiment A (computational runtime analysis)

Factors Levels

Number of jobs 3, and 5
Number of Operations 3,5, and 8
Number of resources 3
Number of sources 2 (Regular Time, and overtime)
Processing time Discrete Uniform (4,16) hours
Demand-to-Capacity Ratio 1.0

Figure 3. Computation runtime to solve MTO mathematical model to optimality

For the above problems, the planning horizon was anywhere between 3 to 17 days. We aspire to

solve short-term capacity planning problems with a planning horizon up to a month (30 days)

and a set of 8 to 10 customer orders, each having more than 5 operations. While negotiating with

the customers (during quotation process), sales department may have to consider different

scenarios before accepting an order. Many customers are sensitive to time and may require the

manufacturer to respond in a timely fashion. On the other hand the manufacturer should assess

the current workload and available capacity to make judicious decisions. Considering the above

factors, there is a need to generate solutions to the order acceptance and capacity planning in

MTO operations relatively quickly for large problem sizes. In the next section we present a B&P

algorithm for solving the MILP proposed in Section 3.1.

4. BRANCH AND PRICE ALGORITHM

4.1. Model decomposition

The proposed MTO model inherits a block diagonal or angular structure as shown in Figure 4.

This special structure is well suited for applying the Dantzig-Wolfe decomposition principle. In

Dantzig-Wolfe decomposition, the original formulation is decomposed into a master problem

3 5 8

Number of operations

3 jobs runtime 0.35 2.66 3509.78
5 jobs runtime 0.57 577.98 52954.7
5 job optimality gap 0 0 3.89%

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%

0
2500
5000
7500

10000

O
pt

im
al

ity
 g

ap

R
un

tim
e

in

se
co

nd
s

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

15

and one or more sub-problems. Instead of enumerating all the variables (columns) in the master

problem, columns which improve the objective are generated as needed by solving the sub

problem(s). The sub problem (or pricing problem) and the master problem (or restricted master

problem) is solved iteratively until no columns can be generated. When the master problem is

solved the integer restrictions on the variables are typically relaxed. Consequently, when no

improving column can be generated a branch and bound search procedure is implemented to fix

non-integer decision variables. At each node of the branch and bound search tree the column

generation procedure is applied. This entire process is referred to as branch-and-price in the

literature. For a detailed discussion on B&P, we refer the reader to Wilhelm (2001).

The capacity constraint (2) is the binding or complicating constraint in our formulation. The rest

of the constraints can be decomposed into sets of constraints for each job that can go in the sub-

problem. The sub-problem solution will generate the schedule for the corresponding job that can

be added as a column to the restricted master problem (RMP).

Capacity Constraint Binding

Job 1

Job 2

Job |J|

Subproblems

Figure 4. Decomposition of the MTO model (Block-Diagonal Structure)

The MTO restricted master problem is formulated as follows:

Maximize ZRMP
LP = ෍ qjUj

jאJ

- ෍ ෍ ෍ ෍ ෍ ෍ (crsxjorts
k

kאKjsאStאTrאRoאOjjאJ

)λj
k (15)

Subject to

෍ ෍ ෍ xjorts
k λj

k≤ brts
kאKjoאOjjאJ

S (16)אT,sאR,tאr׊

෍ λj
k= Uj

kאKj

J (17)אj׊

λj
k≥ 0 binary ׊jאJ,kאKj (18)

Uj≥ 0 binary ׊jאJ (19)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16

Where, Kj is the set of columns generated from solving the sub-problem for job j. A column is a

feasible schedule for the corresponding job. An initial feasible solution to the RMP is determined

by a greedy heuristic presented in Section 4.3.

A feasible schedule for job j should satisfy the processing time constraint (3), the physical

constraint of processing job j for not more than lts hours in source s of time period t, the due-date

constraint (7) and the precedence constraints (8) and (9). The corresponding formulation for the

sub-problem or pricing problem of job j will consist of the constraint set (3) to (11) with an

objective of minimizing the total manufacturing cost. The objective function for the pricing

problem is formulated as,

Minimize Zsp
j = ෍ ෍ ෍ ෍ (crs+wrts)xorts

sאStאTrאRoאOj

௝ (20)ߙ+

Where, wrts and ߙ is the dual variables of constraints (16) and (17), respectively. Ideally, the

solution approach for solving the sub-problem should be fast as it has to be solved many times

during the B&P procedure. In B&P the sub-problems need not be solved to optimality, a

heuristic can be used to generate improving columns. Upon further analyzing the structure of

each sub-problem, a network flow representation is identified and exploited to solve the sub-

problems efficiently. The construction of the network and the solution approach to solve the

network flow problem to obtain feasible schedule for each job is presented in the next section.

4.2. Exact procedure for solving the sub-problem

The sub-problem for job j is represented as a Directed Acyclic Graph (DAG) Gj=൛Nj,Ajൟ, where

Nj denotes the set of nodes and Aj denotes the set of arcs. Each time period is discretized into

smaller intervals with equal length denoted by dtu. Let the set of discretized time instants for job

j from time period one till its due-date dj be Hj= ቄ1,2,…, ∑ ∑ lts
dtusאS

dj
t=1 ቅ. Each operation o of job j

is split into dtu sized operations. Let the set of split operations for all the operations in j be

Ej= ൜1,…,
∑ pjoroאOj

dtu
ൠ where r is the resource type on which operation o of job j needs to be

processed and let the set Io
j = ൝1,…,

pjor
dtuൗ ൡ be the set of split operations for operation o of job j.

The set of nodes consists of three types, an artificial source node, an artificial sink node, and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

17

OperationTimeNodes. The nodes in OperationTimeNodes set are denoted by a 2-tuple

N൛eאEj,hאHjൟ such that we have |Hj| nodes corresponding to each element in Ej. We have lts/dtu

nodes in Hj corresponding to each source s in time period t. There is a set of secondary attribute

for each node represented by a 4-tuple SAe,h൛oאOj,iאIo
j rאR,tאT,sאSൟ. The set of arcs consists of

two distinct types, set of idle arcs ൛IArcsكAjൟ and set of processing arcs ൛PArcsكAjൟ. An arc is

represented by the notation Ae,h
e'h' , where (e,h) and (e’,h’) is the tail node and head node

respectively. There is a cost associated with each arc denoted by Ceh
e'h'. Idle arcs are connected

between two consecutive nodes of the same split operation starting at node {e,h} and ending at

{e,h+1}. The processing arc starting from node {e,h} goes to node {e+1,h+1}. This ensures that

each discretized operation e is completed before starting discretized operation e+1. This structure

captures the precedence constraint of the sub-problem. All arc capacities are set to one. A unit

flow in the processing arc implies that the split operation e is processed for dtu time units in time

instance h. A unit flow in the idle arc implies that the split operation e will not be processed for

dtu time units in time instance h. A unit flow sent from the source node reaching the sink node

ensures that all the operations in job j are processed by the due-date dj. The cost of idle arc is

zero while the cost of the processing arc is given by crs+wrts, where r is the resource on which

operation o of job j needs to be processed in source s of time period t. The arc connecting the

source node to the first node in the operationTimeNodes N{1,1} is denoted by Asource
1,1 and cost of

that is fixed to zero. All the arcs to the sink node are denoted Ae,h
sink. The shortest path from the

source node to the sink node gives us the schedule for job j at the minimum processing cost.

Figure 5 shows a general DAG representation of the sub-problem.

It is apparent from Figure 5 that there exist nodes which cannot be reached from the source node

or nodes whose outbound flow can never reach the sink node and as such they can never be part

of the shortest path. Hence we can eliminate such nodes. To further understand this concept,

consider a sub-problem for job j with three operations having processing times 5, 2, and 3 hours,

respectively. For simplicity consider that they need to be processed on the same resource. Let the

due-date for job j be dj = 1 day and we have two sources, regular time and over time of 8 hours

each. Suppose we discretize time in units of one hour, the corresponding graph for the sub-

problem is shown in Figure 6. The earliest we can process split operation e=1 is in time instance

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18

1 corresponding to h=1, which implies that the earliest we can process split operation e’=e+1=2

is in h’=h+1=2, and thus all the nodes for e’=2 before time instance h’=2 can be ignored in Gj.

For processing job j by its due-date, the latest we can process the split operation e=1 is in time

instance 7 corresponding to h=7, thus the flow from all the nodes ሼh16,...,8א ,e=1ሽ cannot reach

the sink node and thus the corresponding nodes can be ignored in Gj. This logic can be extended

to all the split operations and time instances ൛eאEj, hאHjൟ to eliminate the unwanted nodes.

Figure 5. General Directed Acyclic Graph (DAG) representation of the sub-problem

Figure 6 shows a feasible path from the source node to the sink node. The nodes visited in the

path are shaded in black and the path is represented by thick arrows. In each time period and

source we can count for each operation how many processing arcs have been traversed which

will give us the number of hours of processing of that operation. For example, for regular time in

time period 1, operation 1 is processed for four hours. This information is used to determine the

X variables (i.e. Xj1r11 = 4) for each column.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

19

Figure 6. Illustration of DAG for sub-problem representation

The pseudo code for finding the shortest path for acyclic digraph (Rardin, 1998) and extracting

the schedule from the shortest path solution are given below:

Algorithm for finding the shortest path:

BEGIN
ሾܰሼ1,1ሽሿݒ ՚ 0
ሾܰሼ1,1ሽሿ݋݄ܶݐܽܲݐ݌݋ ՚ ݁݀݋݊ ݁ܿݎݑ݋ݏ
For Nሼe',h'ሽאOperationTimeNodes ൛eאEj,hאHjൟ\N{1,1}
 If N{e’,h’} exists then
 For Nሼe,hሽא ቄN൛e',h'-1ൟ,N൛e'-1,h'1-ൟቅ

 vൣN{e',h'}൧←min ቄvሾN{e,h}ሿ+Ceh
e'h'

 : ቀAeh
e'h'

exists ቁቅ
 optPathToሾNሼe',h'ሽሿ←node Nሼe,hሽ achieving the minimum cost
 End for
 End if
End for
Let vሾsink nodeሿ←min༌ ቄvൣN{|Ej|,h}൧+Ceh

sink : ቀA|Ej|h
sink exists,׊hאHjቁቅ

Let optPathToሾsink nodeሿ←node Nሼe,hሽ achieving the minimum cost
END

Algorithm to extract schedule from the shortest path solution for sub-problem j:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20

BEGIN
Initialize xjorts=0 ൫׊oאOj,rאR,tאT,sאS൯
Let Nሼe,hሽ←optPathTo[sink node]
 If (Ae,h

sinkאPArcs) then
 Let xjorts←xjorts+1 (׊o,r,t,sאSAe,h)
End if
While (N{e,h} ≠ source node)
 Let Nሼe',h'ሽ←optPathTo[Nሼe,hሽ]
 If (Ae',h'

e,h PArcs) thenא
 Let xjorts←xjorts+1 (׊o,r,t,sאSAe',h')
 End if
 Let Nሼe,hሽ←Nሼe',h'ሽ
End while
END

4.3. Greedy heuristic for initial solution to RMP

A greedy heuristic is proposed to obtain the initial basic feasible solution to the RMP. The set of

available jobs J are sorted in a non-increasing order of their profit margins, where profit margin

is the ratio of the sales price to the cost of processing the job in regular time, and stored in a list.

Each job in this list is scheduled one at a time with an objective of minimizing their processing

costs. To determine the schedule, the sub-problem solution approach described in Section 4.2 is

followed. If the schedule determined improves the objective function value (i.e. the total profit)

then the job is accepted and the residual capacities for the resources are updated, else the job is

rejected. The dual prices are set to zero for the capacity constraints and the convexity constraints.

The costs of the processing arcs which have been already utilized by previously scheduled jobs

are set to infinity, to take care of the residual capacities of the resources in their respective time

periods and sources.

4.4. Branching

4.4.1. Definition of an integer feasible solution to RMP

We formally define a feasible integer solution to the RMP.

Definition 1: Consider a set of columns ݇ א ௝ for job j represented by the basic variables λjܭ
k in

the RMP, such that ∑ λj
k=1kאKj , which implies Uj=1 (from constraint (17)). The convex

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

21

combination θj= ∑ xjorts
k λj

k
kאKj is a feasible integer solution to the RMP for job j if for any pair of

operations (oi,oi+1){׊i=1,…,|Oj|-1} in ߠ௝, there is no precedence violation.

Consider job j with 3 operations having processing times 6, 10 and 4 hours, respectively. In the

RMP, suppose we have two schedules corresponding to the basic variables, λj
1=0.45 and λj

2=0.55.

For an intuitive representation of a schedule a matrix notation is followed, where the rows denote

the time period t and source s while the columns denote the operations. Suppose the schedules

corresponding to the basic variables are as shown below. Then the convex combination θj is as

shown below.

௝ߣ
ଵ֜x

jorts
1 ֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
4 0 0
0 0 0
2 6 0
0 0 0
0 4 4
0 0 0
0 0 0
0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

t=1,s=1
t=1,s=2
t=2, s=1
t=2,s=2

ڭ

t=4, s=2

 λj
2 ֜ xjorts

2 ֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 0
6 0 0
0 0 0
0 8 0
0 2 2
0 0 2
0 0 0
0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

௝ߠ ൌ ෍ ௝௢௞௥௧ݔ
௞ ௝ߣ

௞
ଶ

௞ୀଵ

֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1.8 0.0 0.0
3.3 0.0 0.0
0.9 2.7 0.0
0.0 4.4 0.0
0.0 2.9 2.9
0.0 0.0 1.1
0.0 0.0 0.0
0.0 0.0 ے0.0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In θj, none of the adjacent operation pairs have a precedence violation; the processing time

constraint (3), physical constraint (4) and due-date constraint (7) are satisfied and hence θj is an

integer feasible solution to RMP for job j. Now consider another basic column λj
3with a

corresponding schedule given by xjorts
3 and the new solution to RMP is λj

1=0.15, λj
2=0.35, and

λj
3=0.5. Then the convex combination ߠ′௝ is given as,

௝ߣ
ଷ ֜ ௝௢௥௧௦ݔ

ଷ ֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
6 0 0
0 6 0
0 4 4
0 0 0
0 0 0
0 0 0
0 0 0
0 0 ے0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

௝′ߠ ൌ ෍ ௝௢௞௥௧ݔ
௞ ௝ߣ

௞
ଷ

௞ୀଵ

֜

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
3.6 0.0 0.0
2.1 3.0 0.0
0.3 2.9 2.0
0.0 2.8 0.0
0.0 1.3 1.3
0.0 0.0 0.7
0.0 0.0 0.0
0.0 0.0 ے0.0

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

In θ'j, operation 1 ends in time period 2, source 1, while operation 2 starts in time period 1,

source 2. Thus for operation pair (1,2) there is a precedence violation. Similarly for operation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22

pair (2,3) the precedence constraint is violated. Thus θ'j, is an infeasible integer solution to the

RMP for job j.

4.4.2. Branch-and-Price Strategy 1 (BPS1)

In the original formulation there are two binary variables Y and U. While branching in B&P

algorithm the literature suggests to branch on the original variables, instead of branching on the

variable ߣ in the RMP. From Definition 4.1, we know that to get an integer feasible solution to

the RMP for job j, Uj should be exactly equal to 1, implying that job j is selected and the

precedence constraints are satisfied. Hence at any node in the branch and bound tree if Uj is

fractional, we branch on Uj, setting Uj to 0 in the first (left) child node and Uj to1 in its twin

(right) node. If at any node in the branch and bound tree, if all Uj’s are either 0 or 1, and their

corresponding ߠ௝ is integer feasible as per Definition 1, then an integer feasible solution for the

original formulation can be reported.

In the case that Uj is binary, but θj is integer infeasible, then the original variable Y has to be

fixed. Fixing Y variables is not as straight forward as fixing U, since they are not used in the

RMP. In the original formulation Y is an indicator variable used for ensuring that the linear

precedence amongst operations is maintained. Whenever θj is fractional all the constraints except

the precedence constraint of a job are satisfied. In such a case a branching strategy, which

attempts to balance the solution space on either nodes, is proposed to restore the precedence

constraints.

A pair of operations (o,o+1) has a precedence violation if operation o+1 starts before the

completion of operation o. We define this violation in absolute terms as the precedence error ߝ௣
௢

for job pair (o,o+1) given by the difference in the end time of operation o and start time of

operation o+1. Equation (21) computes the precedence error between the violating adjacent pair

of operations.

 εp
o=2൫eto-sto+1൯+(eso-sso+1) (21)

Where, eto and eso is the time period and source respectively in which operation o is completed,

while sto+1 and sso+1 is respectively the time period and source in which operation o+1 starts. For

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23

the purposes of this research we refer to a particular time period and source combination as time-

source instance.

Let ߠ௝
ᇱ be an integer infeasible solution at node n in the branch and bound tree and all Uj be

binary. We try to restore the precedence amongst the violating operation pair with maximum

precedence error first. Let this pair be denoted by (o,o+1). Consider the illustration in Section

4.4.1, with schedule ߠ௝
ᇱ being an integer infeasible solution at some node n in the branch and

bound tree and all Uj are binary. Figure 7 shows the schedule generated from this convex

combination. Operation pair (2,3) has the maximum precedence error (εp
2) of 2 units. Hence we

select this pair to restore precedence feasibility.

Figure 7. Schedule obtained from the convex combination

In branching strategy 1 (BPS1) for the first child node we place the restriction that operation o

cannot be scheduled in the time period (eto) and source (eso) in which it had finished its

processing in schedule θj
' . In the second child node we place the restriction that operation o+1

cannot be scheduled in the time period (sto+1) and source (sso+1) when it began its processing in

schedule θj
' . There are no other restrictions on scheduling either these operations or other

operations.

For the example under consideration, in child node 1 we place the restriction that operation 2 is

not allowed to be scheduled in regular time (s=1) of the third time period, while in child node 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24

operation 3 is not to be scheduled during the regular time (s=1) of the second time period. Figure

8 shows these restrictions on each node using a black colored box.

Figure 8. Branching strategy 1 (BPS1)

4.4.3. Branch and Price Strategy 2 (BPS2)

BPS1 guarantees an optimal solution. However, it takes a long time to prove optimality (see

section 5.0). Since one variable is fixed at a time in BPS1, the branch and bound tree can grow

exponentially. To overcome this problem a B&P heuristic (BPS2) is presented in this section.

For BPS2, unlike in BPS1 instead of fixing a single time period and source in each child node,

we introduce time windows, during which operations o and o+1 are not allowed to be scheduled.

This proposed method for fixing original variables gives us an approximate solution; but is

intended to reduce the computational time. In θj
' , the precedence violation can be viewed as two

mutually exclusive events. The first is keeping the start time of operation o+1 as is. In that case,

operation o has to be completely processed by the time period and source in which operation o+1

has started in θj
' . The second event is that we keep the end time of operation o as is, so in such a

case the earliest we can start processing operation o+1 is from the time operation o ends. Thus

we can create the time windows during which we cannot schedule the two operations. In the first

child node we place the restriction that operation o cannot be processed after source (sso+1) in

time period (sto+1), since this is the start time of operation o+1. Also, since we want to keep this

start time as is, we can have an additional restriction that we cannot process operation o+1 before

this time/source instance. In the other child node we place a restriction that operation o cannot be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

scheduled after time period (eto) and source (eso) onwards along with operation o+1 not to be

scheduled before this time period and source. Hans (2001) has used a similar approach to repair

precedence violations of the fractional solution by creating three child nodes. Figure 9 shows the

branching strategy using BPS2. We disallow operations to be processed during certain time

periods and sources in the sub-problem network by fixing the processing arc costs for the

corresponding time periods and sources to a large value.

Figure 9. Branching in BPS2

4.4.4. Lagrangian bounds

Column generation process carries out many iterations with very small improvements in

objective function value of the RMP. Thus it takes relatively longer times to prove optimality of

the current solution. This is called the “tailing-off” effect. We can reduce this effect by stopping

the column generation procedure earlier by proving optimality of the current solution. To achieve

this we provide an upper bound (since the original problem is a maximization problem). If the

upper bound at a node in the branch and bound tree is less than the best known integer solution

value then the column generation procedure can be terminated and the node can be fathomed

without the risk of missing the optimum.

Lasdon (1970) provides a lower bound calculation for the master problem from the current

objective value and the reduced costs obtained by solving the sub-problems. We follow a similar

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26

method, but unlike Lasdon our RMP is a maximization problem and hence the bound which we

get is in fact an upper bound to the Master Problem (MP). Also, we have an additional variable

Uj which is non-decomposable; as such it is not a part of the sub-problem solution. We now

discuss the computation of the upper bound.

Proposition 1: Given that ZRMP
LP is the current objective function value of the RMP at optimality,

then the upper bound to the optimal objective value for the MP is given by

ZRMP
LP - ൣmin൫∑ ൫min ZSP

j ൯, 0j ൯൧

Proof:

ࢁࢗ െ ࣅ࢞ࢉ െ ࢈࢝ ൌ ࢁࢗ െ ࣅ࢞ࢉ െ ࣅ࢞࢝ െ ࣅሺࢻ െ ሻ (22)ࢁ

ࢁࢗ െ ࣅ࢞ࢉ െ ࢈࢝ ൌ ࢁࢗ െ ࢉሾሺࣅ ൅ ࢞ሻ࢝ ൅ ሿ ࢻ ൅ (23) ࢁࢻ

From Equation (20) we know ሺࢉ ൅ ࢞ሻ࢝ ൅ ൌ ࢻ ∑ ሺ݉݅݊ ௌܼ௉
௝ ሻ௝ . Since ݉݅݊ ௌܼ௉

௝ is the reduced cost

of jth sub-problem, we consider only those that will improve the objective function value of

RMP, hence ሺࢉ ൅ ࢞ሻ࢝ ൅ ∑can be replaced by ݉݅݊൫ ࢻ ൫݉݅݊ ௌܼ௉
௝ ൯, 0௝ ൯.

ࢁࢗ െ ࣅ࢞ࢉ െ ࢈࢝ ൑ ࢁࢗ െ ∑ ∑ ௝ߣ
௞

௞א௄ೕ௝א௃ ൣ݉݅݊൫∑ ൫݉݅݊ ௌܼ௉
௝ ൯, 0௝ ൯൧ ൅ (24) ࢁࢻ

Rearranging the terms in Equation (24), we get,

ࢁࢗ െ ࣅ࢞ࢉ ൑ ࢁࢗ ൅ ࢈࢝ ൅ ࢁࢻ െ ∑ ∑ ௝ߣ
௞

௞א௄ೕ௝א௃ ൣ݉݅݊൫∑ ൫݉݅݊ ௌܼ௉
௝ ൯, 0௝ ൯൧ . (25)

The dual objective function value of the RMP is given by ࢁࢗ ൅ ࢈࢝ ൅ which is equal to the ,ࢁࢻ

objective function value of the primal RMP at optimality. We can re-write equation (25) as

 qU – cxλ ൑ ܼோெ௉
௅௉ ‐ ∑ ∑ ௝ߣ

௞
௞א௄ೕ௝א௃ ൣ݉݅݊൫∑ ൫݉݅݊ ܼௌ௉

௝ ൯, 0୨ ൯൧. (26)

4.4.5. Node Selection

Three strategies are implemented for node selection during the branch and bound search process,

namely, Depth first Search (DFS), Best First Search (BeFS) and a combination of depth first and

best first strategy (DFS+BeFS). In DFS strategy when exploring a particular node, we form two

child nodes and select the node with the best bound for exploration. We continue this till we find

an integer solution and then backtrack to the nodes which are unexplored. In BeFS strategy we

search for the node with the best bound in the complete B&B tree for exploration. In DFS+BeFS

strategy we try to combine the first and second strategy. We begin with DFS strategy and after

finding an integer solution we implement BeFS so as to select an unexplored node having the

best bound in the B&B tree and again apply DFS. Preliminary experimentation showed that

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

27

DFS+BeFS strategy performs the best, and hence we use this node selection strategy for further

experimentation.

4.4.6. Approximation Algorithms for Branch & Price

The bounds from the decomposition algorithms are generally tighter when compared to the linear

programming relaxations of the original formulation and typically feasible solutions are

determined early on in the process. Truncated tree search algorithms may provide very good

approximations - in truncated tree search algorithms the number of nodes evaluated in the

solution process is reduced according to some pre-specified scheme (Savelsbergh, 1997). In the

approximation algorithm, which we propose, we introduce a optimality tolerance ߛ, such that a

node is fathomed if ZRMP
LP ≤ሺ1+γሻZIP, where ZIP is the value of the best known integer solution.

5. EXPERIMENTATION AND RESULTS

The branch and price algorithm was implemented in C++ using IBM/ILOG Concert technology

(CPLEX 10.1) for solving the RMP. The experiment was conducted on a Intel Core 2 CPU 6330

@ 1.86 having 0.97 GB of RAM running Microsoft Windows XP professional system. The

results of B&P were compared to benchmark problems solved using CPLEX 10.1. For many

large instances – especially with 8 and 10 jobs, even after running for several hours did not

converge to optimum. Consequently, the run time of CPLEX was restricted to 1800 sec and the

best integer solution reported was used for comparison purposes.

The complete experimental setup to assess the solution quality of the B&P algorithm is presented

in Table 6. A full factorial experiment was conducted. For each factor and level combination

three instances were generated. The number of resources is fixed to 3 for problem instances with

3 and 5 operations per job, and to 5 for instances with 8 and 10 operations per job. The due-date

for each job is randomly generated within 60% to 100% of the planning horizon. The regular

time cost for each resource is randomly generated from a uniform distribution between 20 and

80. The ratio of regular time to over time cost is 1:1.5. The sales price for each job is decided

using Equation (27).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28

Table 6. Factors and Levels for Experiment

Factors Levels
Number of jobs 3, 5, 8 and 10
Number of operations 3, 5, 8 and 10
DC ratio 0.8, 1.0 and 1.2
Processing time distribution (hours) DU[4,16]

qj= ∑ ௝௢௥ܿ௥,௦ୀଵ݌ כ ሺ1 ൅ ሺ0.7 כ ܷሾ0,1ሿሻሻ௢אை಻ (27)

We implemented the approximation algorithms for both BPS1 and BPS2 with ߛ value of 0.01

and 0.05. For ߛ value of 0.0 we get the original BPS1 and BPS2 strategies. For being concise, we

represent the name of the branching strategy followed by the optimality tolerance within

brackets. For example, BPS2(0.01) represents branching strategy BPS2 with an optimality

tolerance ߛ ൌ 0.01. This convention is followed throughout this section.

Table 7 presents the percentage improvement in solution obtained by various B&P strategies

over CPLEX. CPLEX performs marginally better than the B&P strategies for instances with 3

jobs. The solution quality of B&P increases as the number of jobs increase. For 8 job and 10 job

instances the improvements were at least 35% and 196% respectively.
Table 7. Improvement over CPLEX

% improvement over CPLEX
Jobs Opts. BPS1 BPS2

ߛ ൌ 0.00 0.01 0.05 0.00 0.01 0.05
3 3 0.00 0.00 0.00 -0.12 -0.12 -0.12

5 0.00 -0.05 -0.81 -0.28 -0.36 -0.52
8 0.00 -0.04 -0.83 -0.13 -0.13 -0.92

10 -0.04 -0.10 -0.14 -0.09 -0.14 -0.23
Average -0.01 -0.05 -0.44 -0.15 -0.19 -0.45

5 3 0.00 0.00 -0.24 -0.07 -0.16 -0.34
5 -0.13 -0.35 -1.24 -0.18 -0.38 -0.80
8 -3.24 -3.28 -3.28 0.36 0.31 -0.26

10 4.43 4.16 3.96 2.36 2.22 1.70
Average 0.26 0.13 -0.20 0.62 0.50 0.07

8 3 0.00 -0.04 -1.69 0.00 -0.07 -1.65
5 1.18 1.09 -0.36 1.48 1.27 -0.23
8 20.99 20.94 20.51 21.65 21.14 19.52

10 144.34 140.65 139.81 141.76 141.03 139.44
Average 38.69 37.80 36.70 38.35 37.98 36.41

10 3 0.00 -0.07 -0.69 0.00 -0.05 -0.76
5 1.35 1.28 0.12 1.47 1.46 -0.22
8 52.13 51.70 50.58 51.78 51.64 50.91

10 1178.07 1178.07 1175.39 1200.37 1199.62 1170.61
Average 199.11 198.95 197.72 202.53 202.36 196.95

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

29

Table 8 presents the computation runtime to solve the various problem instances by the different

B&P strategies. BPS1(0.0) takes the most time to solve the problems. When the number of

operations are less (i.e. 3 and 5) BPS2(0.0) is faster than BPS1(0.0) and BPS1(0.01), but as the

number of operations increase BPS1(0.01) is faster than BPS1(0.0). The approximation

algorithms with optimality tolerance of 0.05 are much faster than any other, while BPS2(0.05)

performs the best in terms of runtime. Since BPS1(0.0) is slowest, we compute the reduction in

runtime achieved by using the other approximate B&P strategies. The results are shown in Table

9. For 10 job problems BPS2(0.05) can show on an average 81% reduction in runtime over

BPS1(0.0). As seen from the improvements made over CPLEX, BPS2(0.05) makes 196%

improvement as opposed to BPS2(0.0) which makes 202.53% but at a much lesser computation

overhead. This shows that the approximation algorithms are a viable alternative to the exact

procedure.

Table 8. Runtime analysis of Branch and Price

Runtime in seconds
Jobs Opts. BPS1 BPS2

ߛ ൌ 0.00 0.01 0.05 0.00 0.01 0.05
3 3 0.33 0.03 0.03 0.03 0.03 0.03

5 4.33 0.87 0.16 0.15 0.13 0.10
8 0.54 0.34 0.30 0.18 0.14 0.09

10 102.08 100.68 0.90 0.94 0.71 0.60
Average 26.82 25.48 0.35 0.32 0.25 0.20

5 3 0.32 0.16 0.16 0.10 0.09 0.08
5 210.50 102.33 0.70 0.56 0.41 0.31
8 483.20 403.18 102.94 14.02 5.83 1.69

10 800.67 633.56 205.96 360.15 308.88 110.18
Average 373.67 284.81 77.44 93.71 78.80 28.07

8 3 0.89 0.82 0.31 0.34 0.29 0.16
5 502.71 204.83 4.32 122.79 102.27 1.74
8 900.45 802.12 145.02 807.37 711.64 155.66

10 900.38 900.94 301.34 900.64 755.10 254.47
Average 566.84 465.07 107.36 445.13 381.96 98.68

10 3 101.87 101.88 1.62 0.94 0.65 0.41
5 408.61 33.88 16.63 21.73 7.40 4.28
8 900.43 639.28 180.69 900.34 805.50 81.14

10 900.76 780.15 487.35 900.81 900.95 391.71
Average 537.56 339.88 132.10 400.34 369.59 85.35

Finally we present the maximum number of columns generated (refer to Table 10), and

maximum branch and bound nodes generated (refer to Table 11) for the different number of jobs

and operations. This information is helpful to analyze the size of the branch and bound tree, the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30

effectiveness of the sub-problem solution approach and the memory requirements for the

solution approach. We do not see a clear pattern as regards to the columns generated and the

problem size. But for high number of jobs and operations per job, the number of columns

generated by BPS2 is more than BPS1. The maximum number of columns generated were for a 5

job 8 operation problem by BPS2(0.01).

Table 9. Reduction in runtime

%age reduction in runtime
Jobs Opts. BPS1 BPS2

0.01 0.05 0.00 0.01 0.05
3 3 22.74 22.81 30.35 25.17 13.27

5 13.68 28.77 24.52 29.80 40.39
8 -40.30 7.29 10.64 15.22 14.33

10 21.74 34.38 31.52 32.51 35.52
Average 4.46 23.31 24.26 25.67 25.88

5 3 6.04 1.92 37.03 41.05 49.65
5 25.25 40.97 62.46 66.31 66.00
8 30.43 70.58 88.68 90.31 91.33

10 24.34 71.89 50.86 59.82 84.45
Average 21.52 46.34 59.76 64.37 72.86

8 3 6.81 47.95 48.31 54.39 67.85
5 32.78 69.73 67.94 70.33 87.30
8 10.92 83.89 10.34 20.97 82.71

10 -0.06 66.53 -0.03 16.13 71.74
Average 12.98 67.04 32.55 41.15 77.56

10 3 -0.13 26.91 70.54 66.53 81.05
5 41.58 54.30 79.57 81.27 87.19
8 29.00 79.93 0.01 10.54 90.99

10 13.39 45.90 -0.01 -0.02 56.50
Average 21.91 52.49 42.22 44.53 81.74

The number of nodes in the branch and bound tree are lesser in BPS2 as compared to BPS1,

which makes intuitive sense because in BPS2, a set of original variables are fixed to zero based

on the concept of time windows, as compared to BPS1, where only one original variable is fixed

at a time. Also the overhead of traversing the branch and bound tree to set the columns at each

node in the branch to zero which violates the current restrictions is much more when the number

of nodes in the branch and bound is more and hence the increase in computational time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

31

Table 10. Number of columns generated in B&P

Maximum number of columns generated
Jobs Opts. BPS BPS2

ߛ ൌ 0.0 0.01 0.05 0 0.01 0.05
3 3 41 41 41 81 81 81

5 1713 396 348 316 231 268
8 851 851 376 498 447 253

10 50546 49085 1064 2631 1350 400
5 3 9370 2972 388 437 379 191

5 61797 68180 808 1197 500 412
8 64480 62893 2904 61562 83342 2423

10 64747 15366 7588 20085 6646 3851
8 3 1891 1172 1083 642 447 287

5 64786 66269 48435 16900 7873 1614
8 67009 65031 51689 74524 77517 71755

10 63420 55750 44805 73850 76483 47446
10 3 51436 53432 1560 2321 1874 1536

5 61202 63623 65702 67678 68219 70360
8 59340 62094 54651 66367 65360 67664

10 50688 52075 27938 61918 65165 63451

Table 11. Size of branch and bound tree in B&P

Maximum nodes formed in the branch and bund tree

Jobs Opts. BPS BPS2
ߛ ൌ 0.0 0.01 0.05 0 0.01 0.05

3 3 15 15 15 19 19 19
5 2327 691 85 49 37 19
8 213 111 103 67 43 23

10 6239 6097 135 161 127 99

5 3 325 75 95 43 33 35
5 14627 6541 109 89 43 27
8 9111 9057 9105 809 353 97

10 6589 5245 4283 3557 3065 2027

8 3 261 261 161 67 57 31
5 10845 11225 389 4161 4699 143
8 5455 4179 2797 4725 2861 1541

10 3939 3081 3047 3055 2865 1665

10 3 13921 13969 319 253 141 41
5 9411 1771 849 959 321 209
8 4915 5163 2555 2997 2903 1253

10 3377 2233 2211 1981 1649 1061

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32

6. CONCLUSIONS AND FUTURE WORK

Integrating order acceptance and capacity planning provides tremendous opportunities to

maximize the operational profits of make-to-order operations. This is done by selectively

accepting jobs from the available pool of customer orders and simultaneously planning for their

capacity. This integrated problem is difficult to solve and many researchers have tried to simplify

the problem by planning for the bottleneck machines and solving the problem as a single

machine problem. But in reality, the bottleneck is floating as it depends on the orders which are

selected. Furthermore, capacity is not fixed since it can be extended by considering overtime and

outsourcing, which might be beneficial for improving the profits. Non-regular capacity has not

been considered in any of the previous work done in the area of MTO order acceptance problem.

In this paper we propose a Mixed-Integer Linear Program (MILP) to model MTO as a job shop

with multiple resources and recirculation. We consider regular capacity (regular shift) and non-

regular capacity (overtime shift). The MTO operation receives customer orders or jobs each with

a number of operations having linear precedence relationship. Using the model we illustrated that

integrating the two decisions of order acceptance and capacity planning can achieve our goal to

maximize the operational profits. Typically order acceptance problems are solved on a daily

basis for short term capacity planning with a rolling planning horizon of 3 to 4 weeks. Hence the

solution approach to this integrated problem should be quick such that the decision maker can

use it frequently not only to find the optimal set of orders and to allocate capacity but also to

explore various other scenarios that would help in negotiating order due-dates and prices while

better aligning with the firm’s long-term business strategy. To efficiently solve this model we

propose an exact branch and price algorithm (BPS1). We present Lagrangian bounds for

fathoming the nodes in the branch and bound tree. We further improve the runtime of the

solution approach by developing an approximate branching scheme (BPS2). We combine BPS1

and BPS2 with various approximation algorithms for truncating the branch and bound tree.

We show through experiments that the BPS1 and other approximation schemes perform better

than the solution provided by the commercial solver, and can solve problems of sizes which are

typically found in real-life applications. Figures 10 and 11 graphically summarize the

improvements made by B&P algorithms and the computational runtime of various solution

approaches discussed in this paper. We observe that B&P performs 200% better than the results

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

33

obtained from solving the MILP at a much lesser computational overhead as compared to a

commercial solver. BPS2(0.05) can solve, on an average, 10 jobs problems in 85 seconds and

making 196% improvements over CPLEX. Thus B&P algorithms are faster and solve problems

in reasonable time, and they can be utilized in a decision support system on a daily basis to help

make intelligent decisions in a MTO operation.

Figure 10. Average improvement in solution quality

Figure 11. Runtime for various solution approaches

3 jobs 5 jobs 8 jobs 10 jobs

BPS1 -0.01 0.26 38.69 199.11
BPS1 0.01 -0.05 0.03 37.80 198.95
BPS1 0.05 -0.44 -0.20 36.70 197.72
BPS2 -0.15 0.62 38.35 202.53
BPS2 0.01 -0.19 0.50 37.98 202.36
BPS2 0.05 -0.45 0.07 36.41 196.95

-10

40

90

140

190

Pe
rc

en
ta

ge

Improvement over CPLEX

3 jobs 5 jobs 8 jobs 10 jobs

CPLEX 156.98 1195.84 1582.88 1476.23
BPS1 26.82 373.67 566.84 537.56
BPS1 0.01 25.48 284.81 465.07 339.88
BPS1 0.05 0.35 77.44 107.36 132.1
BPS2 0.32 93.71 445.13 400.34
BPS2 0.01 0.25 78.8 381.96 369.59
BPS2 0.05 0.2 28.07 98.68 85.35

0

400

800

1200

1600

Ti
m

e
in

 s
ec

on
ds

Runtime for various solution approaches

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34

The problem under consideration is a basic problem found in many industrial settings. The

model and solution proposed lay the foundation for other more complex problems of practical

interest having variations to this basic one. For example, we consider non-regular capacity as

overtime, but some make-to-order operations consider outsourcing options extensively.

Integrating outsourcing is another important variation to the problem we have considered.

Instead of having orders with a simple deliverable, many MTO operations handle orders that

consist of product assemblies made of smaller sub-assemblies. Hence, their precedence relations

are non-linear though each sub-assembly may still have linear precedence amongst its own sub-

operations or tasks.

REFERENCES

Barut M. and Sridharan V. Design and Evaluation of a Dynamic Capacity Apportionment
Procedure. European Journal of Operations Research 2004;155(1); 112-133.

Chen Chin-Sheng. Concurrent engineering-to-order operation in the manufacturing engineering
contracting industries. International Journal of Industrial and Systems Engineering, 2006; 1(1);
37-58.

Ebben M. J. R., Hans E. W. and Weghuis O. F. M. Workload Based Order Acceptance in Job
Shop Environments. OR Spectrum 2005;27; 107-122.

Gallien J., Tallec Y. L. and Schoenmeyr T. A Model for Make-To-Order Revenue Management.
MIT Sloan School of Management, Working Paper, November 2004.

Ghosh J. B. Job Selection in a Heavily Loaded Shop. Computers Ops. Res. 1997; 24(2); 141-
145.

Hans E. Resource Loading by Branch-and-Price Techniques. University of Twente, Ph.D.
Thesis, 2001;

Harris F. H., deB. and Pinder J. P. A Revenue Management Approach to Demand Management
and Order Booking in Assemble-to-Order Manufacturing. Journal of Operations Management
1995; 13; 299-309.

Jalora A. Order Acceptance and Scheduling at a Make-To-Order System using Revenue
Management. Texas A&M University, Dissertation, August 2006;

Lasdon L. S. Optimization Theory for Large Systems. Macmillan Publishing Co., Inc.: New
York;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

35

Mehmet B. and Sridharan V. Revenue Management in Order-Driven Production Systems.
Decision Sciences 2005; 36(2); 287-316.

Rom W. O. and Slotnick S. A. Order Acceptance using Genetic Algorithms. Computers &
Operations Research 2009; 36(6); 1758-1767.

Slotnick S. A. and Morton T. E. Order Acceptance with Weighted Tardiness. Computers &
Operations Research 2007; 34; 3029-3042.

Slotnick S. A. and Morton T. E. Selecting Jobs for Heavily Loaded Shop with Lateness
Penalties. Computers & Operations Research 1996; 23(2); 131-140.

Streitfeld D. Amazon pays a price for marketing test. Los Angeles Times; 2000; C1
Van den Akker J. M., Hoogeveen H. and van de Velde S. Parallel Machine Scheduling by
Column Generation. Operations Research 1999; 47(6); 862-872.

Van den Akker J. M., Hoogeveen H. and van de Velde S. A column generation algorithm for
common due date scheduling. 1997;

Van den Akker J. M., Hurkens C. A. J. and Savelsbergh M. W. P. A Time-Indexed Formulation
for Single-Machine Scheduling Problems: Column Generation. INFORMS Journal of computing
2000;12(2); 111-124.

Van den Akker J. M., Van Hoesel C. P. M. and Savelsbergh M. W. P. A Polyhedral Approach to
Single-Machine Scheduling Problems. Mathematical Programming 1999; 85(3); 541-572.

Wilhelm W. E. A Technical Review of Column Generation in Integer Programming.
Optimization and Engineering 2001; 2; 159-200.

Zijm W. H. M. Towards Intelligent Manufacturing. OR Spektrum 2000; 22; 313-345.

