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Abstract

We propose a modified longest processing time (MLPT) heuristic algorithm for the two uniform machine makespan minimization
problem. The MLPT algorithm schedules the three longest jobs optimally first, followed by the remaining jobs sequenced according
to the LPT rule. We prove the tight worst-case ratio bound of

ffiffiffiffiffiffiffi
1:5
p

¼ 1:2247 for the MLPT algorithm which is an improvement over
the tight worst-case ratio bound of 1.28 for the LPT algorithm.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Uniform parallel machines; LPT; Approximation algorithms
1. Introduction

One of the earliest scheduling rules for parallel machine scheduling problems is the longest processing time (LPT) pri-
ority rule in which the jobs are listed in a nonincreasing processing time order and the next job on the list is scheduled on
the machine on which it will finish the earliest. Graham (1969) derived the tight worst-case ratio bound of the LPT rule for
the identical parallel machine makespan minimization problem and also observed that the derived bound can be improved
if the k longest jobs are scheduled optimally first, followed by the remaining jobs scheduled according to the LPT rule.
Koulamas and Kyparisis (2008) demonstrated the robustness of this approach by implementing it to a two identical par-
allel machine scheduling problem with the objective of minimizing the sum of squares of the machine completion times.

The objective of this paper is to investigate whether or not the above approach extends to a uniform parallel machine
environment; more precisely, whether or not it can be implemented to the two related (uniform) parallel machine makespan
minimization (Q2kCmax) problem which is defined as follows. We assume that there are n jobs J j with processing times pj,
j ¼ 1; . . . ; n to be scheduled nonpreemptively on two uniform parallel machines. Machine M1 (the ‘‘fast” machine) has
speed 1 and machine M2 (the ‘‘slow” machine) has speed 1=q, where q P 1. The effective processing time of job Jj is pj

on machine M1 and qpj on machine M2. The completion time of job J j is denoted as Cj, j ¼ 1; . . . ; n. The machine com-
pletion time of machine Mi, i ¼ 1; 2, defined as the completion time of the last job scheduled on it, is denoted as CMi,
i ¼ 1; 2. The maximum machine completion time (makespan) is defined as Cmax ¼ maxj¼1;...;nfCjg ¼ maxfCM1;CM2g. The
objective is to minimize Cmax. Gonzalez et al. (1977) showed that the LPT rule yields the tight worst-case ratio bound
of 1.28 for the Q2kCmax problem. In this paper, we propose a modified LPT (MLPT) priority rule in which the three longest
jobs are scheduled optimally first, followed by the remaining jobs scheduled according to the LPT rule. We show that the
MLPT rule has the tight worst-case bound of 1.22, an improvement over the LPT bound of 1.28.
0377-2217/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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We close this section by surveying the related literature. Mireault et al. (1997) determined the parametric LPT bound for
the whole spectrum of q, the speed ratio of the two uniform machines. Epstein and Favrholdt (2005) proposed three vari-
ants of the LPT algorithm which improve the LPT bound for certain q values without improving the overall nonparametric
LPT bound of 1.28. Additional references for the related on-line version of the Q2kCmax problem can be found in Koula-
mas and Kyparisis (2006).

The rest of the paper is organized as follows. The proposed MLPT heuristic is presented in the next section followed by
the derivation of its tight worst-case ratio bound in Section 3. An extension to the MLPT heuristic is presented in Section 4
and some concluding remarks are presented in Section 5.

2. The modified LPT algorithm

The proposed algorithm MLPT for the Q2kCmax problem can be summarized as follows.
Algorithm MLPT

Step 1: Sort all jobs J j, j ¼ 1; . . . ; n, in the nonincreasing order of their pj values, that is p1 P p2 P . . . P pn. Let S
denote the resulting list (sequence); (without loss of generality, we assume that S ¼ f1; 2; . . . ; ng and we denote job J j sim-
ply as job j).

Step 2: If n 6 2, then schedule all jobs optimally by using the LPT rule.
If n P 3, then schedule the first (longest) 3 jobs in S optimally followed by the remaining jobs scheduled according to the

LPT rule.
The running time of algorithm MLPT is Oðn log nþ cÞ, where c represents the constant time needed to schedule the three

longest jobs optimally.
Following Mireault et al. (1997), we introduce the following notation. Let CH ðP ; qÞ and C�ðP ; qÞ denote the makespan of

the algorithm MLPT and the optimal makespan, respectively, for the problem instance ðP ; qÞ. Let the relative error for
MLPT with respect to problem instance ðP ; qÞ be defined as
RELðP ; qÞ ¼ CH ðP ; qÞ � C�ðP ; qÞ
C�ðP ; qÞ :
The parametric worst-case ratio bound for MLPT is defined as
RðqÞ ¼ supfRELðP ; qÞ : Pg

and the overall nonparametric worst-case ratio bound q is defined as
q ¼ supfRðqÞ : q P 1g: ð1Þ

The derivation of q is detailed in the next section.

3. The worst-case ratio bound of MLPT

For a problem instance ðP ; qÞ, let T ð1; jÞ, T ð2; jÞ denote the sums of processing times pj of all jobs assigned by MLPT to
machines M1 and M2, respectively, after job j has been assigned. Thus, the total effective processing time for MLPT is
T ð1; nÞ on M1 and qT ð2; nÞ on M2. We first adapt Lemma 2 in Mireault et al. (1997) (developed for the LPT heuristic)
to the MLPT heuristic.

Proposition 1. For any n P 1,
CH ðP ; qÞ � C�ðP ; qÞ 6 qpn

qþ 1
: ð2Þ
Proof. Since T ð1; n� 1Þ, T ð2; n� 1Þ denote the sums of processing times pj of all jobs assigned by MLPT to machines M1
and M2, respectively, after job n� 1 (and before job n) has been assigned, we can write
CH ðP ; qÞ ¼ minfT ð1; n� 1Þ þ pn; qT ð2; n� 1Þ þ qpng:

This implies that
CH ðP ; qÞ 6T ð1; n� 1Þ þ pn; ð3Þ
CH ðP ; qÞ 6qT ð2; n� 1Þ þ qpn: ð4Þ
Let C�ðiÞ, i ¼ 1; 2, denote the sums of processing times pj of all jobs assigned to machines M1 and M2, respectively, in the
optimal schedule. Since C�ð1Þ 6 C�ðP ; qÞ and qC�ð2Þ 6 C�ðP ; qÞ, h



C. Koulamas, G.J. Kyparisis / European Journal of Operational Research 196 (2009) 61–68 63
T ð1; n� 1Þ þ T ð2; n� 1Þ þ pn ¼ C�ð1Þ þ C�ð2Þ 6 ½1þ 1

q
�C�ðP ; qÞ: ð5Þ
The equality in (5) is a result of the observation that the total processing time of all jobs is the same for both the MLPT
and the optimal solutions, respectively. By adding q=ðqþ 1Þ times inequality (3), 1=ðqþ 1Þ times inequality (4) and
q=ðqþ 1Þ times inequality (5), we obtain
q
qþ 1

CH ðP ; qÞ þ 1

qþ 1
CH ðP ; qÞ þ q

qþ 1
½T ð1; n� 1Þ þ T ð2; n� 1Þ þ pn�

6
q

qþ 1
½T ð1; n� 1Þ þ pn� þ

1

qþ 1
½qT ð2; n� 1Þ þ qpn� þ

q
qþ 1

1þ 1

q

� �
C�ðP ; qÞ;
or, CH ðP ; qÞ 6 q
qþ1

pn þ C�ðP ; qÞ which is equivalent to (2). h

The next result is an adaptation of Proposition 1 in Mireault et al. (1997) (developed for the LPT heuristic) to the MLPT
heuristic.

Proposition 2. For any n P 1,
RðqÞ 6 1

2qþ 1
: ð6Þ
Proof. If n 6 3, the MLPT algorithm supplies an optimal solution, therefore RðqÞ ¼ 0 in this case. Assume that n P 4. If
T ð2; n� 1Þ ¼ 0 then the MLPT algorithm assigns the first n� 1 jobs to M1 in which case CH ðP ; qÞ ¼ C�ðP ; qÞ and
RELðP ; qÞ ¼ 0. Thus, CH ðP ; qÞ–C�ðP ; qÞ implies that T ð2; n� 1Þ > 0, or that
pn 6 T ð2; n� 1Þ: ð7Þ

By adding 2q times inequality (3), 2q times inequality (5), q times inequality (7) and inequality (4), we obtain
2qCH ðP ; qÞ þ CH ðP ; qÞ þ 2q½T ð1; n� 1Þ þ T ð2; n� 1Þ þ pn� þ qpn

6 2q½T ð1; n� 1Þ þ pn� þ ½qT ð2; n� 1Þ þ qpn� þ 2q
�

1þ 1

q

�
C�ðP ; qÞ þ qT ð2; n� 1Þ;
or, ð2qþ 1ÞCH ðP ; qÞ 6 ð2qþ 2ÞC�ðP ; qÞ, which is equivalent to (6). h

Our MLPT heuristic supplies the optimal solution when n 6 3, therefore we should determine its worst-case ratio bound
q for all remaining n values. For each of these remaining n values, we first derive RðqÞ for all q P 1 values and then deter-
mine q according to (1).

3.1. The worst-case ratio bound of MLPT when n P 6

Let us denote by nOPT ðiÞ the number of jobs assigned to Mi, i ¼ 1; 2 in the optimal solution C�ðP ; qÞ. The thrust of the
proof is to first determine RðqÞ for each of the five q ranges depicted in Fig. 1 and then trivially obtain q according to (1).

Lemma 1. For n P 6, RðqÞ 6 1
3qþ3 ; q 2 ½1; 4

3� and RðqÞ 6 q
4qþ4 ; q 2 ½43 ; 2�.
Fig. 1. Bound on RðqÞ when n P 6.
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Proof

1-1. nOPTð1Þ 6 3; then nOPTð2ÞP 3 and C�ðP ; qÞP 3qpn, which, together with (2), yields
RELðP ; qÞ 6
qpn
qþ1

3qpn

¼ 1

3qþ 3
; q P 1:

The inequality 1
3qþ3
6

q
4qþ4

when q 2 ½4
3
; 2� completes the proof of 1-1.

1-2. nOPTð1ÞP 4; then C�ðP ; qÞP 4pn, which, together with (2), yields

RELðP ; qÞ 6
qpn
qþ1

4pn

¼ q
4qþ 4

; q P 1:

The inequality q
4qþ4
6

1
3qþ3

when q 2 ½1; 4
3
� completes the proof of 1-2. h

Lemma 2. For n P 6, RðqÞ 6 1
2qþ2

, q 2 ½2; 2:5� and RðqÞ 6 q
5qþ5

, q 2 ½2:5; 1þ
ffiffiffiffiffiffiffi
3:5
p

�.

Proof

2-1. nOPTð2Þ 6 1; then nOPTð1ÞP 5 and C�ðP ; qÞP 5pn, which, together with (2), yields
RELðP ; qÞ 6
qpn
qþ1

5pn

¼ q
5qþ 5

; q P 1:

The inequality q
5qþ5
6

1
2qþ2

when q 2 ½2; 2:5� completes the proof of 2-1.
2-2. nOPTð2ÞP 2; then C�ðP ; qÞP 2qpn, which, together with (2), yields

RELðP ; qÞ 6
qpn
qþ1

2qpn

¼ 1

2qþ 2
; q P 1: ð8Þ

The inequality 1
2qþ2
6

q
5qþ5

when q 2 ½2:5; 1þ
ffiffiffiffiffiffiffi
3:5
p

� completes the proof of 2-2. h

Lemmas 1 and 2 combined with Proposition 2 for q 2 ½1þ
ffiffiffiffiffiffiffi
3:5
p

;1Þ lead to the following proposition which is stated
next without proof (see also Fig. 1).

Proposition 3. For n P 6, q 6 1
6 ¼ 0:1667.
3.2. The worst-case ratio bound of MLPT when n ¼ 4

Let us denote by Hðj1; . . . ; jn1
jk1; . . . ; kn2

Þ and Oðj1; . . . ; jn1
jk1; . . . ; kn2

Þ the solution provided by algorithm MLPT and the
optimal solution, respectively, where jobs j1; . . . ; jn1

are assigned to M1, jobs k1; . . . ; kn2
are assigned to M2; the job sets

fj1; . . . ; jn1
g and fk1; . . . ; kn2

g are mutually exclusive and n1 þ n2 ¼ n. For example, Hð2j1; 3Þ denotes an MLPT solution
with job 2 assigned to M1 and jobs 1; 3 assigned to M2 and Oð1; 2; 3j�Þ denotes an optimal solution with jobs 1; 2; 3
assigned to M1 and no job assigned to M2.

There are eight possible configurations for C�ðP ; qÞ when n ¼ 3, three of which are ‘‘dominated”, that is they are no
better than some other configuration. The five ‘‘nondominated” configurations are
Oð1j2; 3Þ;Oð1; 2j3Þ;Oð1; 3j2Þ;Oð2; 3j1Þ;Oð1; 2; 3j�Þ:

Since algorithm MLPT first finds an optimal schedule for the longest three jobs and then schedules all subsequent jobs
using the LPT rule, there are ten possible configurations for CH ðP ; qÞ when n ¼ 4 (each C�ðP ; qÞ configuration for n ¼ 3
generates two possible CH ðP ; qÞ configurations for n ¼ 4 by assigning the fourth job in the LPT list to either machine
M1 or M2). These ten configurations are
Hð1;4j2;3Þ;Hð1j2;3;4Þ;Hð1;2;4j3Þ;Hð1;2j3;4Þ;Hð1;3;4j2Þ;Hð1;3j2;4Þ;Hð2;3;4j1Þ;Hð2;3j1;4Þ;Hð1;2;3;4j�Þ;Hð1;2;3j4Þ:
Also, among the sixteen possible configurations for C�ðP ; qÞ when n ¼ 4, the following ten configurations are
nondominated
Oð1j2;3;4Þ;Oð1;2j3;4Þ;Oð1;3j2;4Þ;Oð1;4j2;3Þ;Oð2;3j1;4Þ;Oð1;2;3j4Þ;Oð1;2;4j3Þ;Oð1;3;4j2Þ;Oð2;3;4j1Þ;Oð1;2;3;4j�Þ:

Consequently, we need to implicitly or explicitly consider one hundred possible matchings between the ten possible con-
figurations for CHðP ; qÞ and the ten nondominated configurations for C�ðP ; qÞ when n ¼ 4 in order to derive RðqÞ. As in
subsection 3.1, the thrust of the proof is to determine RðqÞ for each of the five q ranges depicted in Fig. 2.
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Lemma 3. For n ¼ 4, RðqÞ 6 q
3qþ3, q 2 ½1; 1þ

ffiffiffiffi
37
p

6 �, RðqÞ 6 q� 1, q 2 ½1þ
ffiffiffiffi
37
p

6 ;
ffiffiffiffiffiffiffi
1:5
p

�.

Proof. We observe first that for all ten nondominated optimal configurations listed earlier nOPTð1Þ > 0.

3-1. nOPTð1ÞP 3; then C�ðP ; qÞP 3pn ¼ 3p4, which, together with (2), yields
RELðP ; qÞ 6
qpn
qþ1

3pn

¼ q
3qþ 3

; q P 1: ð9Þ

The inequality q
3qþ3
6 q� 1 when q 2 ½1þ

ffiffiffiffi
37
p

6
;
ffiffiffiffiffiffiffi
1:5
p

� completes the proof of 3-1.
3-2. nOPTð1Þ ¼ 1; then nOPTð2Þ ¼ 3, therefore C�ðP ; qÞP 3qpn ¼ 3qp4, which, together with (2), yields

RELðP ; qÞ 6
qpn
qþ1

3qpn

¼ 1

3qþ 3
6

q
3qþ 3

; q P 1:

The inequality q
3qþ3
6 q� 1 when q 2 ½1þ

ffiffiffiffi
37
p

6
;
ffiffiffiffiffiffiffi
1:5
p

� completes the proof of 3-2.
3-3. nOPTð1Þ ¼ 2 (which corresponds to the nondominated configurations Oð1; 2j3; 4Þ, Oð1; 3j2; 4Þ, Oð1; 4j2; 3Þ,
Oð2; 3j1; 4Þ); then

C�ðP ; qÞP maxfp1 þ p4; p2 þ p3g: � ð10Þ

We want to show that
CH ðP ; qÞ 6 maxfqðp1 þ p4Þ; qðp2 þ p3Þg ð11Þ

for all ten possible configurations of CH ðP ; qÞ when n ¼ 4 because the combination of (11) and (10) will lead to
RELðP ; qÞ ¼ CHðP ; qÞ � C�ðP ; qÞ
C�ðP ; qÞ 6 q� 1: ð12Þ
Inequality (11) is clearly true for configuration Hð1; 4j2; 3Þ (because CH ðP ; qÞ ¼ maxfp1 þ p4; qðp2 þ p3Þg for Hð1; 4j2; 3Þ)
and for configuration Hð2; 3j1; 4Þ (because CH ðP ; qÞ ¼ maxfp2 þ p3; qðp1 þ p4Þg for Hð2; 3j1; 4Þ).

Consider the five configurations Hð1j2; 3; 4Þ, Hð1; 2; 4j3Þ, Hð1; 3; 4j2Þ, Hð2; 3; 4j1Þ, Hð1; 2; 3; 4j�Þ. For each one of them,
let us consider the alternative configuration H 0 derived from H by assigning job J 4 to the other machine; denote this match-
ing as H ! H 0. Since H represents the MLPT solutions with the fourth jobs assigned according to the LPT rule,
CH ðP ; qÞ 6 CH 0 ðP ; qÞ. We show next that inequality (11) holds for each one of the five CH 0 ðP ; qÞ values, therefore it also
holds for each one of the corresponding CH ðP ; qÞ values since CHðP ; qÞ 6 CH 0 ðP ; qÞ.

3-3-1. Hð1j2; 3; 4Þ ! H 0ð1; 4j2; 3Þ; CH 0 ðP ; qÞ 6 p1 þ p4.
3-3-2. Hð1; 2; 4j3Þ ! H 0ð1; 2j3; 4Þ; CH 0 ðP ; qÞ 6 qðp3 þ p4Þ.
3-3-3. Hð1; 3; 4j2Þ ! H 0ð1; 3j2; 4Þ; CH 0 ðP ; qÞ 6 qðp2 þ p4Þ.
3-3-4. Hð2; 3; 4j1Þ ! H 0ð2; 3j1; 4Þ; CH 0 ðP ; qÞ 6 qðp1 þ p4Þ.
3-3-5. Hð1; 2; 3; 4j�Þ ! H 0ð1; 2; 3j4Þ; CH 0 ðP ; qÞ 6 qp4.
It is easy to see from the above inequalities that (11) holds for all CH 0 ðP ; qÞ values listed above.
We now prove inequality (11) for the remaining three configurations Hð1; 2j3; 4Þ, Hð1; 3j2; 4Þ and Hð1; 2; 3j4Þ, respec-
tively. Let the notation H  O denote that O is the optimal configuration for n ¼ 3 that generated the H configuration
for n ¼ 4.
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3-3-6. Hð1; 2j3; 4Þ  Oð1; 2j3Þ. The optimality of Oð1; 2j3Þ implies that the ð1j2; 3Þ configuration is no better than
Oð1; 2j3Þ, or that

maxfp1 þ p2; qp3g 6 qðp2 þ p3Þ; ð13Þ
therefore CH ðP ; qÞ ¼ maxfp1 þ p2; qðp3 þ p4Þg 6 qðp2 þ p3Þ because of (13).

3-3-7. Hð1; 3j2; 4Þ  Oð1; 3j2Þ. The optimality of Oð1; 3j2Þ implies that the ð1j2; 3Þ configuration is no better than
Oð1; 3j2Þ, or that

maxfp1 þ p3; qp2g 6 qðp2 þ p3Þ; ð14Þ
therefore CH ðP ; qÞ ¼ maxfp1 þ p3; qðp2 þ p4Þg 6 qðp2 þ p3Þ because of (14).

3-3-8. Hð1; 2; 3j4Þ  Oð1; 2; 3j�Þ. The optimality of Oð1; 2; 3j�Þ implies that the ð1; 2j3Þ configuration is no better than
Oð1; 2; 3j�Þ, or that

p1 þ p2 þ p3 6 qp3; ð15Þ
therefore CH ðP ; qÞ ¼ maxfp1 þ p2 þ p3; qp4g 6 qðp2 þ p3Þ because of (15).

Consequently, inequality (11) holds for all H configurations and, together with (10), yields (12). The inequality
q� 1 6 q

3qþ3
when q 2 ½1; 1þ

ffiffiffiffi
37
p

6
� completes the proof of 3-3.

Lemma 4. For n ¼ 4, RðqÞ 6 1
2qþ2, q 2 ½

ffiffiffiffiffiffiffi
1:5
p

; 1:5�, RðqÞ 6 q
3qþ3, q 2 ½1:5; 1þ

ffiffi
7
p

2 �.

Proof

4-1. nOPTð1ÞP 3; by Lemma 3 (case 3-1), inequality (9) holds. The inequality q
3qþ3
6

1
2qþ2

when q 2 ½
ffiffiffiffiffiffiffi
1:5
p

; 1:5� completes
the proof of 4-1.
4-2. nOPTð2ÞP 2; by Lemma 2 (case 2-2), inequality (8) holds. The inequality 1

2qþ2
6

q
3qþ3

when q 2 ½1:5; 1þ
ffiffi
7
p

2
� completes

the proof of 4-2. h

Lemmas 3 and 4 combined with Proposition 2 for q 2 ½1þ
ffiffi
7
p

2
;1Þ lead to the following proposition which is stated next

without proof (see also Fig. 2).

Proposition 4. For n ¼ 4, q 6
ffiffiffiffiffiffiffi
1:5
p

� 1 ¼ 0:2247.
3.3. The worst-case ratio bound of MLPT when n ¼ 5

In this section we derive the q value for the MLPT heuristic when n ¼ 5 by relying only on the properties of the optimal
solution when n ¼ 5 and on Propositions 1 and 2. As in the previous subsections, the thrust of the proof is to determine
RðqÞ for each of the four q ranges depicted in Fig. 3.

Lemma 5. For n ¼ 5, RðqÞ 6 q
3qþ3 ; q 2 ½1; 1:5�.

Proof. For any optimal solution, either nOPTð1ÞP 3 or nOPTð2ÞP 3, therefore C�ðP ; qÞP 3pn, which according to Lemma
3 leads to inequality (9). h
Fig. 3. Bound on RðqÞ when n P 5.
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Lemma 6. For n ¼ 5, RðqÞ 6 1
2qþ2

; q 2 ½1:5; 2�, RðqÞ 6 q
4qþ4

, q 2 ½2; 3þ
ffiffiffiffi
41
p

4
�.

Proof. For any optimal solution, either nOPTð1ÞP 4 or nOPTð2ÞP 2, therefore C�ðP ; qÞP minf4pn; 2qpng, which, together
with (2), leads to
RELðP ; qÞ 6
qpn
qþ1

minf4pn; 2qpng
¼ max

qpn
qþ1

4pn

;

qpn
qþ1

2qpn

( )
¼ max

q
4qþ 4

;
1

2qþ 2

� �
:

ffiffiffiffip

Since q

4qþ4
6

1
2qþ2

when q 2 ½1:5; 2� and 1
2qþ2
6

q
4qþ4

when q 2 ½2; 3þ 41
4
�, the lemma holds.

Lemmas 5 and 6 combined with Proposition 2 for q 2 ½3þ
ffiffiffiffi
41
p

4 ;1Þ lead to the following proposition which is stated next
without proof (see also Fig. 3). h
Proposition 5. For n ¼ 5, q 6 0:2.
3.4. The overall nonparametric bound of MLPT

Theorem 1. q 6 0:2247, and this bound is tight.
Proof. The upper bound follows from the combination of Propositions 3–5. In order to prove tightness consider a problem
instance with n ¼ 4, q ¼

ffiffiffiffiffiffiffi
1:5
p

¼ 1:2247, p1 ¼ 1, p2 ¼ p3 ¼ p4 ¼ qþ1
qþ2
¼ 0:6899. The MLPT and optimal solutions are

depicted in Figs. 4 and 5, respectively. Since C�ðP ; qÞ ¼ 1þ p2 ¼ 2qþ3
qþ2
¼ 1:6899 and CH ðP ; qÞ ¼ p2 þ p3 þ p4 ¼ 3qþ3

qþ2
¼

2:0697, q ¼ q� 1 ¼ 0:2247. h
4. Extensions

In this section we show that the MLPT heuristic can become more accurate (at the expense of additional computational
time) by sequencing optimally 4 or even 5 jobs prior to the implementation of the LPT sequencing rule. The resulting q
values can be obtained without any new derivations by observing that Propositions 1 and 2 were derived utilizing only
the LPT properties of MLPT without relying on the actual number of jobs scheduled optimally by MLPT. Consequently,
the proofs of Propositions 1 and 2 remain valid if we assume that either 4 or 5 jobs are initially sequenced optimally prior to
the implementation of the LPT rule. This observation combined with the fact that the proof of Proposition 5 utilizes only
Propositions 1, 2 and the properties of the optimal solution when n ¼ 5 yield the following proposition (stated without
proof) for a variant of the MLPT heuristic (MLPT1) in which the first (longest) 4 jobs are sequenced optimally prior to
the implementation of the LPT rule.

Proposition 6. For MLPT1, the overall nonparametric worst-case ratio bound q1 satisfies q1 6 0:2.

Similarly, since the proof of Proposition 3 also utilizes only Propositions 1, 2 and the properties of the optimal solution
when n P 6, we state (without proof) the following proposition for another variant of the MLPT heuristic (MLPT2) in
which the first (longest) 5 jobs are sequenced optimally before the LPT rule is implemented.

Proposition 7. For MLPT2, the overall nonparametric worst-case ratio bound q2 satisfies q2 6 0:1667.

We have not established tightness for q1, q2 in Propositions 6, 7; consequently, it is theoretically possible that these
bounds can be improved since they are derived using only the structure of MLPT and not any additional structure resulting
from the optimal sequencing of additional jobs. However, any potential improvement is bounded by the inequalities
0:167 6 q1 6 0:2 and 0:143 6 q2 6 0:167, respectively, in view of the following two problem instances. Let n ¼ 5, q ¼ 1,
p1 ¼ p2 ¼ 3, p3 ¼ p4 ¼ p5 ¼ 2. Then the MLPT1 heuristic and optimal configurations are Hð1; 3; 5j2; 4Þ and
Fig. 5. The MLPT schedule for the tightness example.



68 C. Koulamas, G.J. Kyparisis / European Journal of Operational Research 196 (2009) 61–68
Oð1; 2j3; 4; 5Þ, respectively. Since C�ðP ; qÞ ¼ 6 and CH ðP ; qÞ ¼ 7, q1 ¼ 0:1667. Let n ¼ 6, q ¼ 1, p1 ¼ p2 ¼ 3,
p3 ¼ p4 ¼ p5 ¼ p6 ¼ 2. Then the MLPT2 heuristic and optimal configurations are Hð1; 2; 6j3; 4; 5Þ and Oð1; 3; 4j2; 5; 6Þ,
respectively. Since C�ðP ; qÞ ¼ 7 and CH ðP ; qÞ ¼ 8, q2 ¼ 0:143.

5. Concluding remarks

We showed that the performance of the LPT heuristic for the Q2kCmax problem can be improved by sequencing the lon-
gest three jobs optimally. Our results demonstrate the applicability of this approach (already implemented for identical
parallel machine scheduling problems) to a uniform parallel machine environment. The q values decrease when more jobs
are scheduled optimally, while there is no clear trend with respect to the corresponding q values. It should be noted that this
approach cannot be extended indefinitely since the required computational effort for sequencing jobs optimally quickly
becomes prohibitive due to the well-known NP-hardness of the Q2kCmax problem.
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