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Abstract: We show that the linear objective function of a search problem can be generalized to a power function and/or a loga-
rithmic function and still be minimized by an index priority rule. We prove our result by solving the differential equation resulting
from the required invariance condition, therefore, we also prove that any other generalization of this linear objective function will
not lead to an index priority rule. We also demonstrate the full equivalence between two related search problems in the sense that a
solution to either one can be used to solve the other one and vice versa. Finally, we show that the linear function is the only function
leading to an index priority rule for the single-machine makespan minimization problem with deteriorating jobs and an additive job
deterioration function. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 83–87, 2011
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1. INTRODUCTION

The operations research literature is concerned with the
identification of index priority rules to solve search problems
and/or single-machine sequencing problems. For example,
consider the following objective function [5]

V =
n∑

i=1

ci

i−1∏
j=1

pj =
n∑

i=1

cip
−1
i

i∏
j=1

pj , (1)

stemming from a search problem with n sequentially posi-
tioned boxes; box j contains an object with probability 1−pj

and cj denotes the cost of searching and discovering the
object hidden in box j . The objective is to determine the
optimal positioning of the boxes so that V is minimized. If
the events associated with the probabilities p1, . . . , pn are
assumed to be disjoint rather than independent, then Eq. (1)
can be written as

X =
n∑

i=1

qi

i∑
j=1

dj , (2)

where dj denotes the search cost and qj denotes the probabil-
ity of searching box j . An alternative application of Eq. (2)
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can be found in the single-machine scheduling literature if qj

is not restricted to the [0,1] interval; in that case, qj denotes
the weight of job j and dj the completion time of job j in
a standard non-preemptive single-machine sequencing prob-
lem with constant job processing times and a continuously
available single machine which can process at most one job at
a time. Both Eqs. (1), (2) can be minimized in O(n log n) time
by implementing an index priority rule according to which
each box (job) is assigned a priority computed based exclu-
sively on the characteristics of the box (job); this index is
independent of the presence (absence) of other boxes (jobs)
in the sequence.

These findings motivated two important research ques-
tions:

Question (a): can Eqs. (1) and (2) be generalized and
still be solvable by an index priority rule?
Question (b): can the similarity between Eqs. (1) and
(2) be exploited so that a solution to Eq. (1) can be
used to solve Eq. (2) and vice versa?

Rothkopf and Smith [9] answered question (a) in the con-
text of Eq. (2) and concluded that the only possible gener-
alization of Eq. (2) is to a class of exponential functions.
They arrived at this conclusion by first stating the required
invariance condition and then deriving and solving the result-
ing differential equation. Rothblum and Rothkopf [8] proved
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that the findings of Rothkopf and Smith [9] hold in a dynamic
environment as well.

Kelly [5] answered question (b) and concluded that any
schedule σ0 that strictly minimizes X in (2) (that is, X(σ0) <

X(σ) for all σ ) also strictly minimizes V in (1) under certain
conditions linking the expressions in (1) and (2). Kelly [5]
reached his conclusion by first linking Eqs. (1) and (2) via
a real-valued variable x and then requiring x to assume
sufficiently small positive values. We also mention that, in
addition to models (1) and (2), Kelly [5] considered the third,
“minimax” model proposed by Monma and Sidney [6].

The first objective of this note is to extend the answers
to questions (a) and (b). We extend the answer to question
(a) by showing that Eq. (1) can be generalized to any power
function and/or to a logarithmic function and still be solvable
by an index priority rule.

We also extend the answer to question (b) by first linking
Eqs. (1) and (2) without depending on any real-valued vari-
able x and then showing the full equivalence of Eqs. (1) and
(2) in the sense that a solution to Eq. (1) can be used to solve
Eq. (2) and vice versa.

Question (a) has also been posed by Browne and Yechiali
[2] in the context of a single-machine sequencing problem
with job deterioration due to waiting. In that case, the actual
job processing times depend on the job starting times and in
the case of a linear job deterioration function can be expressed
as

Yi(t) = Xi + αit , (3)

where Xi > 0 is the initial processing requirement of job i,
t is the starting time of job i and αi is the processing growth
rate of job i. Browne and Yechiali [2] showed that in the case
of the linear job deterioration function (3), the maximum job
completion time (makespan) can be minimized by an index
priority rule and concluded their paper by stating that it would
be of interest to see if any other job deterioration functions
yield an index policy.

We answer this question in the case of an additive job
deterioration function by first formulating the differential
equation resulting from the required invariance condition and
then showing that only the linear job deterioration function
yields an index policy.

The rest of this note is organized as follows. Section 2
is concerned with the generalization of Eq. (1) so that it
is still solvable by an index priority rule. Section 3 is con-
cerned with the equivalence of Eqs. (1) and (2). Section 4 is
concerned with the optimality of index priority rules for the
single-machine sequencing problem with deteriorating jobs
and an additive job deterioration function. Some concluding
remarks are stated in Section 5.

2. THE GENERALIZATION OF THE
SEARCH PROBLEM

Consider the search problem described by Eq. (1) with n

boxes i, i = 1, . . . , n, and suppose that each box i has a gen-
eral search cost function Ci(ti), where ti = ∏i

j=1 pj . The
total cost function is thus given by

n∑
i=1

Ci(ti) =
n∑

i=1

Ci


 i∏

j=1

pj


 .

We are interested in index priority rules for minimizing∑n
i=1 Ci(ti). The well-known index priority rule in the

case of the linear function Ci(ti) = cip
−1
i ti in (1) is that∑n

i=1 Ci(ti) is minimized when the tasks are scheduled in
the non-decreasing order of the index ci

1−pi
[7].

As in Rothkopf and Smith [9], we consider a class F of
nonnegative, nondecreasing cost functions C(t) closed under
positive scalar multiplication and define the following invari-
ance condition which must hold in order for an index priority
rule to exist.

2.1. Invariance Condition 1.

For any two boxes i, j with probabilities 0 < pi < 1,
0 < pj < 1 and cost functions Ci(t) and Cj(t) in F ,
respectively, the inequality

Ci(pipj ) − Ci(pi) ≥ Cj(pipj ) − Cj(pj )

implies that, for all τ ≥ 0,

Ci(τpipj ) − Ci(τpi) ≥ Cj(τpipj ) − Cj(τpj ).

For an arbitrary cost function C(t) in F and probabilities
pi and pj for boxes i and j , we define the constant

K(pi , pj ) = C(pipj ) − C(pi)

C(pipj ) − C(pj )
. (4)

We also define Ci(t) = C(t) and Cj(t) = K(pi , pj )C(t),
where Cj(t) is in F . The constant K(pi , pj ) is well defined
if the denominator in (4) is nonzero. The proof of Theo-
rem 1 below only requires that K(pi , pj ) be well defined
for the pj values arbitrarily close to 1, 0 < pj < 1.
Then, if C(pi) < C(1−) for some 0 < pi < 1, it follows
that C(pipj ) − C(pj ) < 0 for pj sufficiently close to 1,
0 < pj < 1, provided that C(t) is continuous, thus implying
that K(pi , pj ) is well defined. Equation (4) implies that

C(pipj ) − C(pi) = K(pi , pj )[C(pipj ) − C(pj )]. (5)
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Equation (5) in conjunction with the Invariance Condition 1
implies that, for all 0 < pi < 1, 0 < pj < 1, τ ≥ 0,

C(τpipj ) − C(τpi) = K(pi , pj )[C(τpipj ) − C(τpj )].
(6)

The next result is analogous to the result in Rothkopf and
Smith [9] for cost functions of the form Ci(ti), where ti =∑i

j=1 pj .

THEOREM 1: Suppose that Eq. (6) holds for all 0 < pi <

1, 0 < pj < 1 and all τ ≥ 0 and that C(t) is twice con-
tinuously differentiable everywhere except at most at a finite
number of points. Then, C(t) must have one of the following
functional forms

C(t) = Atλ + B, λ �= 0, or C(t) = A ln t + B,

where λ is the same for all functions C(t).

PROOF: The proof that C(t) is twice differentiable for all
0 < t < 1 is analogous to that in Rothkopf and Smith [9].

Suppose that C(pi) < C(1−) where 0 < pi < 1. In view
of (4), Eq. (6) can be written as

C(τpipj ) − C(τpi)

= C(pipj ) − C(pi)

C(pipj ) − C(pj )
[C(τpipj ) − C(τpj )]. (7)

If we divide both sides of (7) by pj − 1 and take the limit as
pj → 1, we obtain

τpiC
′(τpi) = piC

′(pi)

C(pi) − C(1−)
[C(τpi) − C(τ)]. (8)

After dividing both sides of (8) by pi , we subtract C ′(pi)

from both sides to obtain

τC ′(τpi) − C ′(pi)

= C ′(pi)

[
C(τpi) − C(τ) − C(pi) + C(1−)

C(pi) − C(1−)

]
. (9)

If we divide both sides of (9) by τ − 1 and take the limit as
τ → 1, we obtain

piC
′′(pi) + C ′(pi) = C ′(pi)

C(pi) − C(1−)
[piC

′(pi) − C ′(1−)].
(10)

One can verify that the first derivative of the expression

piC
′(pi)[C(pi) − C(1−)]−1 − C ′(1−)[C(pi) − C(1−)]−1

(11)

is

piC
′′(pi)[C(pi) − C(1−)]−1

− pi[C ′(pi)]2[C(pi) − C(1−)]−2

+ C ′(pi)[C(pi) − C(1−)]−1

+ C ′(pi)C
′(1−)[C(pi) − C(1−)]−2. (12)

In view of (11) and (12), (10) implies that

piC
′(pi)[C(pi) − C(1−)]−1

− C ′(1−)[C(pi) − C(1−)]−1 = D

for some constant D, which can be written as

tC ′(t) − DC(t) = C ′(1−) − DC(1−), (13)

where 0 < t < 1. This first order linear differential equa-
tion has a general solution of the form C(t) = A ln t + B

for D = 0. When D �= 0, Eq. (13) has a general solution
C(t) = Atλ + B, where λ �= 0.

It is of interest to point out that there is a more general
family of functions (the power functions) that can be substi-
tuted in Eq. (1) and still be optimized by an index priority
rule compared to the findings of Rothkopf and Smith [9] for
the generalization of Eq. (2). �

3. THE EQUIVALENCE OF THE TWO
SEARCH PROBLEMS

In this section, we extend the partial result on the equiva-
lence between the minimization of V [given by Eq. (1)] and
the minimization of X [given by Eq. (2)] obtained by Kelly
[5] by imposing an additional restrictive assumption that
0 < di < 1 for all i which is not present in Kelly [5]. The com-
mon features of Eqs. (1) and (2) have also been investigated
by Rau [7], Kadane and Simon [4] and Kadane [3].

THEOREM 2: If qi = −ci and di = 1 − pi , where
0 < pi < 1, 0 < di < 1, then the minimization of V is
equivalent to the minimization of X.

PROOF: Observe that the expression for V in Eq. (1)
is minimized when the tasks are scheduled in the non-
decreasing order of the index ci

1−pi
[7]. Similarly, observe that

the expression for X in Eq. (2) is minimized when the tasks
are scheduled in the non-decreasing order of the index di

qi
[7].

Since qi = −ci and di = 1 − pi , X is minimized when the
tasks are scheduled in the non-decreasing order of the index
1−pi

−ci
which is equivalent to the non-decreasing order of the

index ci

1−pi
.

Kelly [5] states that one can obtain the solution that min-
imizes X by finding the solution that minimizes V . Observe
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that Kelly [5] requires x > 0 to be small so that pi = 1−xdi

is positive regardless of the di value. Under the additional
assumption that 0 < di < 1 for all i, we show that one can
also obtain the solution that minimizes V by finding the solu-
tion that minimizes X. As a result, we can eliminate the use of
the additional variable x when relating the constants in V and
X unlike Kelly [5] who considers a general case of di values.
Observe also that both in Theorem 2 and in Theorem 1 in
Kelly [5] the quantities ci and qi cannot be both positive. �

4. THE OPTIMALITY OF INDEX PRIORITY
RULES WITH DETERIORATING JOBS

In most scheduling problems, it is assumed that the job
processing times are constant. Browne and Yechiali [2] were
among the first to consider job deterioration due to waiting,
resulting in the actual job processing times given by Eq. (3).
Browne and Yechiali [2] showed that the makespan can be
minimized by an index priority rule when the actual job pro-
cessing times are given by Eq. (3); they also stated two related
open problems.

Problem (P1): What is the complexity status of the
weighted job completion time problem when linear job
deterioration is in effect?

Ref. 2 conjectured that the problem is NP-hard; subse-
quently, [1] proved that the problem is indeed NP-hard.

Problem (P2): Does an index priority rule exist for the
makespan minimization problem when the degree of job dete-
rioration can no longer be assumed proportional to the job
waiting time? For example, in the case of an additive job
deterioration function, does an index priority rule exist when
the actual processing time Yi(t) of job i is given as

Yi(t) = Xi + fi(t), fi(0) = 0, i = 1, . . . , n, (14)

where fi(t) is a function of the starting time t of job i?
Our objective is to solve problem (P2) when Eq. (14) are

in effect. We first derive the required invariance condition.
Denote by Sk and Yk the actual completion time and the

actual processing time of the kth job in the sequence, respec-
tively, k = 1, . . . , n. Then, Y1 = Y1(S0) = X1, where S0 = 0;
Sk = ∑k

i=1 Yi , where Yi = Xi + fi(Si−1), i = 1, . . . , k,
k = 1, . . . , n. The makespan is defined as Sn.

We consider a class G of nonnegative, nondecreasing cost
functions f (t) (where f (0) = 0) closed under positive scalar
multiplication and define the following invariance condition
which must hold for the existence of an index priority rule to
minimize Sn when Eqs. (14) are in effect.

4.1. Invariance Condition 2.

For any two tasks i, j with Xi > 0 and Xj > 0 and cost
functions fi(t) and fj (t) in G, respectively, the inequality

fi(Xj ) ≥ fj (Xi)

implies that, for all x ≥ 0,

fi(x + Xj + fj (x)) − fi(x) ≥ fj (x + Xi + fi(x)) − fj (x)

(the above inequality is well defined because fj (x) ≥ 0,
fi(x) ≥ 0 for x ≥ 0.)

For an arbitrary cost function f (t) in G and Xi and Xj for
jobs i and j , we define the constant

M(Xi , Xj) = f (Xj )

f (Xi)
. (15)

We also define fi(t) = f (t) and fj (t) = M(Xi , Xj)f (t),
where fj (t) is in G. The constant M(Xi , Xj) is well defined
for Xi > 0, Xj > 0 if f (t) > 0 for any t > 0. Equation (15)
implies that

f (Xj ) = M(Xi , Xj)f (Xi). (16)

Equation (16) in conjunction with the Invariance Condition
2 implies that, for all Xi > 0, Xj > 0, x ≥ 0,

f (x + Xj + M(Xi , Xj)f (x)) − f (x)

= M(Xi , Xj)[f (x + Xi + f (x)) − f (x)]. (17)

THEOREM 3: Suppose that Eq. (17) holds for all Xi > 0,
Xj > 0 and all x ≥ 0 and that f (t) is twice continuously
differentiable for t ≥ 0 and f (0) = 0. Then, f (t) must have
the following functional form

f (t) = At .

PROOF: Suppose that f (t) > 0 for any t > 0. In view of
(15), Eq. (17) can be written as

f

(
x + Xj + f (Xj )

f (Xi)
f (x)

)
− f (x)

= f (Xj )

f (Xi)
[f (x + Xi + f (x)) − f (x)]. (18)

If we divide both sides of (18) by Xj and take the limit as
Xj → 0, we obtain

f ′(x)

[
1 + f ′(0+)

f (x)

f (Xi)

]

= f ′(0+)

f (Xi)
[f (x + Xi + f (x)) − f (x)]. (19)

After multiplying both sides of (19) by f (Xi), we subtract
f ′(0+)[f (Xi) + f ′(0+)f (x)] from both sides to obtain

[f ′(x) − f ′(0+)][f (Xi) + f ′(0+)f (x)]
= f ′(0+)[f (x + Xi + f (x)) − f (Xi)]

− f ′(0+)f (x)[1 + f ′(0+)]. (20)
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If we divide both sides of (20) by x and take the limit as
x → 0, we obtain

f ′′(0+)f (Xi) = f ′(0+)[1 + f ′(0+)][f ′(Xi) − f ′(0+)].
(21)

By dividing both sides of (21) by Xi and taking the limit as
Xi → 0, we obtain

f ′′(0+)f ′(0+) = f ′(0+)[1 + f ′(0+)]f ′′(0+)

which implies that f ′′(0+)[f ′(0+)]2 = 0. If f ′(0+) �= 0
then f ′′(0+) = 0 which, in view of Eq. (21), implies that
f ′(Xi) = f ′(0+). This in turn implies that f (t) = At since
f (0) = 0. On the other hand, if f ′(0+) = 0 then, in view of
Eq. (19), f ′(x) = 0 for any x ≥ 0. This implies that f (t) = 0
since f (0) = 0.

Consequently, problem (P2) can be solved by an index pri-
ority rule only when the general additive Eq. (14) reduce to
the linear Eq. (3). �

5. CONCLUDING REMARKS

We showed that the expression in Eq. (1) can be general-
ized to a power function and/or a logarithmic function and
still be minimized by an index priority rule. We proved our
result by solving the differential equation resulting from the
required invariance condition, therefore, our proof implies
that any other generalization of Eq. (1) will not lead to an
index priority rule. Our findings indicate that there is a more
general family of functions (the power functions) that can be
substituted in Eq. (1) and still be optimized by an index pri-
ority rule compared to the similar findings of Rothkopf and
Smith [9] for the similar Eq. (2).

We also demonstrated the full equivalence between the two
related search problems represented by Eqs. (1) and (2) in the

sense that a solution to either one can be used to solve the
other one as well. This finding strengthens a previous finding
of Kelly [5] on this issue.

In the case of the single-machine sequencing problem
with job deterioration, we showed that the linear function
is the only function leading to an index priority rule for
the makespan minimization problem when an additive job
deterioration function is in effect.
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