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Abstract 

This paper studies a two stage supply chain with a dominant upstream partner. Manufacturer is the 

dominant partner and operates in a Just-in-Time environment. Production is done in a single 

manufacturing line capable of producing two products without stopping the production for switching 

from one product to the other. The manufacturer imposes constraints on the distributor by adhering to 

his favorable production schedule which minimizes his manufacturing cost. Distributor on the other 

hand caters to retailers' orders without incurring any shortages and is responsible for managing the 

inventory of finished goods. Adhering to manufacturer's schedule may lead to high inventory carrying 

costs for the distributor. Distributor's problem, which is to find an optimal distribution sequence which 

minimizes the distributor's inventory cost under the constraint imposed by the manufacturer is proved 

NP-Hard by Manoj et al. (2008). Therefore, solving large size problems require efficient heuristics. We 

develop algorithms for the distribution problem by exploiting its structural properties. We propose two 

heuristics and use their solutions in the initial population of a genetic algorithm to arrive at solutions 

with an average deviation of less than 3.5% from the optimal solution for practical size problems. 

Keywords: Supply chain scheduling, production and distribution system, logistics, genetic algorithm, 

optimized cross over  

 

1. Introduction 
There is an increasing emphasis for 

improving coordination and cooperation among 

supply chain partners in the supply chain 

research literature. See, for example, Sarmiento 

& Nagi (1999), Blumenfeld et al. (1991), 

Chandra & Fisher (1994), Lee & Chen (2001), 

Chang & Lee (2003), Hall & Potts (2003), 

Agnetis et al. (2006), Chen & Hall (2007), Chen 

& Vairaktarakis (2005), Li & Xiao (2004), and 

Dawande et al. (2006).  

However, the fact that one of the partners 

generally assumes a dominant role cannot be 

ignored. Plewes (2004) states that “The most 
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successful supply chain initiatives have tended 

to be driven by the largest player in the value 

chain.” In the same article, according to Nikos 

Drakos, research director at market analyst 

house Gartner, “The relationship is often uneven 

and there is usually one dominant partner and 

they will insist that processes are done a specific 

way. Their partners have to accept the terms of 

engagement if they want to work with them”. “A 

dominant supply chain leader may use its 

position of power to force change to occur 

across the supply chain,” observes Defee (2007). 

Wal-Mart and Dell are examples of dominant 

partners in their respective supply chains. In 

such situations, the dominated members of the 

supply chain will optimize their objectives under 

the constraints imposed by the dominant 

members even though individual optimization 

may not be efficient for the supply chain as a 

whole. It may be possible for the members in the 

supply chain to coordinate by means of contracts 

(Cachon 2003). However, this requires the 

non-dominant member to find how worse this 

solution under this scenario is as compared to 

the coordinated solution.  

There are several research studies that focus 

on study of supply chains in which one partner 

dominates in an operational context. For 

example, Manoj et al. (2008) study production 

and distribution problems in a two-stage supply 

chain; and compare costs where one of the 

partners is a dominant partner with the costs of 

coordinated decisions. Lau et al. (2007a) analyze 

the pricing decisions for a supply chain in which 

the manufacturer is the dominant partner; 

whereas Lau et al. (2007b) focus on pricing 

decisions for the case of dominant retailer.  Xia 

& Gilbert (2007) study the leadership influence 

of manufacturer or dealer on channel structure. 

Taylor (2006) study the sale timing in a supply 

chain in a setting where manufacturer is the 

dominant partner relative to the retailer and have 

all the bargaining power. Dong et al. (2007) 

study the reduction of order cost for delivery of 

goods from manufacturer to the retailer under 

retailer price leadership and manufacturer price 

leadership. All of these studies, although focus 

on different objectives, point to the importance 

of conducting research that analyze supply 

chains with a dominant partner. 

In this paper we focus on a scenario in which 

the manufacturer is the dominant partner and the 

distributor plays the subordinated role. The 

distributor has to find a distribution schedule 

based on the production schedule specified by 

the manufacturer. Specifically, we consider the 

problem of a distributor who receives products 

from a manufacturer and then distributes them to 

the retailers periodically. The manufacturer 

operates in a Just-in-Time (JIT) environment and 

is the dominant member of the supply chain.  

The manufacturer produces the two products 

interchangeably in a single manufacturing line 

and establishes a production schedule that 

specifies the rate of production of the two 

products in each time period during the planning 

horizon. The production schedule established by 

the manufacturer has to be followed by the 

distributor for developing a distribution schedule. 

The method of establishing the production 

schedule by the manufacturer does not impact 

the problem studied in this paper. However, 

manufacturer will establish a production 

schedule that will minimize his cost of 

production. Examples of single manufacturing 

line capable of producing multiple products 
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include Toyota's Global Body Line (Gardner 

1997) and Nissan Integrated Manufacturing 

systems (NIMS) (nissannews.com).  

This paper is organized as follows. Section 2 

describes the problem using mathematical 

notations. It also provides notations for demand 

from retailers, supplies from the manufacturer, 

inventory levels and inventory holding costs. 

The objective of the problem is to minimize total 

inventory holding costs. The objective function 

and the constraints of the problem are derived in 

Section 3. The structural properties of the 

problem to develop heuristics are studied in 

Section 4 and the heuristics to solve the problem 

are developed in Section 5. Section 6 discusses 

the computational experiments. An extension to 

model is proposed in Section 7 and concluding 

remarks are presented in Section 8. 

2. Problem Scenario 
The supply chain we study has n retailers Rk; 

(k = 1, 2, …, n), they demand two product types, 

Pj, (j = 1, 2) periodically. The manufacturer 

incurs cost in changing production rate and 

therefore, his ideal production schedule is the 

one which has minimum number of rate changes. 

This cost is associated with allocation/ 

reallocation of work force, coordination with 

suppliers to ensure timely delivery of raw 

materials etc. Toyota, for example, produces 

Camry cars and Sienna minivans on the same 

production line at Georgetown, Kentucky. 

Sienna requires more sophisticated assembly 

operations (Gardner 1997) so a work force 

exclusive for Sienna is dedicated when it is 

being manufactured. Frequent changes in rate 

schedule is not desirable for the manufacturer as 

it may result in the under utilization of expert 

work force while a product that requires less 

expertise is being manufactured. Note that there 

is no time lost for setup changes, as the 

production line is capable of manufacturing 

multiple products. Hence, there is no setup cost. 

However, there is a cost to change production 

rate as mentioned above. Therefore, the 

manufacturer's ideal production rate is fixed for 

the entire problem horizon given by pj, j = 1, 2 

(equation (2)), which is equal to the average 

demand. 

The planning period, called the distribution 

cycle in this paper, consists of n time periods of 

equal lengths t, as shown in Figure 1. All 

retailers place orders at the beginning of the 

distribution cycle. The manufacturer establishes 

a production rate schedule, based on the total 

demand, that specifies the production rates 

(quantities) of the two products to be produced 

in each time period of the distribution cycle. 

Each retailer is supplied with one truck load of 

P1 and P2 by the distributor only once in a 

selected time period s, (s = 1, 2,…, n) in the 

distribution cycle. The retailer receives the exact 

number of units of P1 and P2 that he has ordered. 

The products P1 and P2 assumed to have 

approximately the same volume requiring the 

same space in the truck. Under the constraint 

imposed by the manufacturer, the distributor has 

to find an optimal schedule, which will reduce 

his inventory holding cost, i.e., his objective is 

to find a distribution sequence, 
* ( (1), (2), , ( ), , ( )),s nν ν ν ν ν= K K that minimizes 

the inventory holding cost, where ν(s) is the 

retailer who is served in time period s. 

The assumption that each retailer's total 

demand for P1 and P2 is limited to one truck load 

(C units) is not too restrictive; it can be relaxed.  



Gupta, Vanajakumari and Sriskandarajah: Sequencing Deliveries to Minimize Inventory Holding Cost 
162  J Syst Sci Syst Eng 

 

 

Figure 1 Supply chain network, n=5, C=100 

If a retailer has a demand which is more than 

one truck load then that retailer can be 

considered as equivalent to multiple retailers. 

For example if the retailer demand (for P1 and P2) 

is 2C units, then it can be assumed that there are 

two retailers with total demand equal to C units 

each. However, we develop the model under the 

assumption that the demand of retailers must be 

multiple of truck loads. This is a reasonable 

assumption in automobile industry since the 

truck capacity, C is small (typically C=10 units 

of autos). The retailers can be expected to 

approximate their demand in multiple of C. Note, 

that the products are manufactured and delivered 

just-in-time. The products must be transported 

from the manufacturer’s premises (to the nearby 

distributor's depot) as soon as they are 

completed. Then the products are bundled 

according to the retailer's demand and 

transported to them by trucks. The main 

objective in the JIT environment is to perform 

this distribution operation with minimum 

inventory cost. 

JIT auto manufacturers in USA typically 

transport autos in big trucks having the capacity 

of carrying 10 autos at a time. Assume that a 

retailer’s demand ratio of the two products (say 

Toyota Camry and Sienna) is 7:3, that is, every 

10 autos sold at his location he sells 7 units of 

Camry and 3 units of Sienna. Suppose his 

demand in a distribution cycle (typically a 

month) is 5 truck loads (35 Camry and 15 

Sienna). Then the distributor sends 5 truck loads 

to this retailer each truck carrying 7 Camry and 

3 Sienna. If the ratio of demand at a retailer does 

not sum up to the truck capacity (C = 10), then 

the composition of auto types can be adjusted 

between different truck loads delivered during 

the distribution cycle to closely match the 

retailer's demand ratio. Consider the demand 

ratio of the two products for a retailer is 3:1 with 

the total demand for products P1 and P2 are 15 

and 5 units, respectively in a distribution cycle, 

i.e., the total demand of two products is equal to 
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two truck loads. We may consider this particular 

retailer is equivalent to two retailers each having 

one truck load. The details of two retailers are 

given as follows: the demand of products P1 and 

P2 are 7 and 3 units, respectively, for the first 

retailer whereas for the second retailer the 

demand for products P1 and P2 are 8 and 2 units, 

respectively. 

Our problem is closely related to periodic 

product distribution which has been a problem 

of significant industrial relevance that has 

received intense attention over the years by both 

academics and practitioners alike. In periodic 

distribution, a set of products are distributed to 

retailers on a periodic basis such as once a week, 

twice a week, and so on. How often should a 

retailer be visited by the distributor for 

delivering products during a planning horizon 

depends upon the retailers' demand, available 

storage space for products, and preference for 

days on which to receive the products. An 

excellent example of periodic product 

distribution is discount department stores that 

carry regular products and goods, clothing, and a 

limited amount of (usually) non-perishable 

groceries. Others in the periodic distribution 

sector include those specifically engaged in 

grocery, food and beverage, automobile and 

petrochemical industries. The challenge of 

constructing delivery routes for each day of the 

planning horizon in periodic distribution is 

known as Periodic Vehicle Routing Problem 

(PVRP). In a typical setting, given a set of 

allowable delivery patterns specified by the 

retailers, the challenge for the distributor is to 

select the most suitable delivery pattern for each 

retailer and deliver the products on the days 

corresponding to the assigned pattern. In this 

study we do not consider routing since each 

route consists of only one retailer requiring one 

truck load of products. However, we consider 

the inventory holding cost at distributor as it is 

very significant cost for any industry. This 

scenario is well suited for automobile 

distribution as the manufacturer (e.g., Toyota) is 

often a dominant member of the supply chain. 

Since the research in periodic product 

distribution is relevant to our study we review 

briefly the literature in this domain. A significant 

number of research pursuits in the classical 

PVRP have appeared in the literature (Fisher & 

Jaikumar 1981, Christofides & Beasley 1984, 

Russell & Gribin 1991, Gaudioso & Paletta 

1992, Chao et al. 1995, Cordeau et al. 1997 and 

Vianna et al. 1999). The classical PVRP focuses 

on delivering products from a single depot to a 

number of retailers according to the assigned 

pattern at a minimum cost with the assumption 

that the delivery frequencies and quantities are 

known and fixed. Retailers are assumed to be 

able to receive the product at any time, meaning 

that no delivery time windows are required. 

Every vehicle is allowed to make only one 

delivery trip per day.  

The problem of minimizing the number of 

delivery routes of a multi-depot PVRP was 

investigated by Yang & Chu (2000). They 

assume that the retailers can specify the delivery 

frequencies in a planning horizon but not the 

delivery days. The problem is solved by first 

constructing the routes for each day of the 

planning horizon and then attempting to reduce 

the number of routes by combining routes on 

different days into a single delivery. It should be 

emphasized that a distributor who owns many 

depots in a region would typically define an 
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effective territory for each depot and let each 

operate independently from the others (Chung & 

Norback 1991, Hadjiconstantinou & Baldacci 

1998). Realistically, however, the product 

supplies at the distributor's depots can be limited, 

thus requiring backordering be allowed. A time 

window can also be specified by retailers for 

delivery of products by the distributor. Carter et 

al. (1996) investigated an integrated product 

distribution problem involving multi-products, 

allowing for backordering and time-window 

deliveries in the presence of a single depot and 

single delivery trip per vehicle on a day. 

Parthanadee & Logendran (2006) recognized the 

need for investigating a similar integrated, 

multi-product, distribution problem, allowing for 

backordering and time-window deliveries but in 

the presence of multi-depots and multiple- 

delivery trips per vehicle on a day. 

As noted, the focus of this research is to 

investigate the periodic product distribution in a 

supply chain setting. The problem is motivated 

by a third-party distributor with a depot in a 

region (near manufacturing facility), entrusted 

with the responsibility of delivering products to 

a set of retailers, also located in the same region, 

and sequencing to make such deliveries to 

retailers on a periodic basis. Supply chains are 

susceptible to power plays: If the manufacturer 

dominates, they may dictate terms to the 

distributor to improve their own performance. 

The proposed research addresses this question 

comprehensively by way of developing models 

and solution techniques for the problem when 

the manufacturer dominates. 

2.1 Demand from Retailers  
The demand for the product Pj for the 

planning horizon is given by 

1 2( , , , )j j j jnD d d d= K  1, 2j = . Where jkd  is 

the demand for product, Pj, from retailer Rk, k =1, 

2,…, n in the planning period. We assume that 

the total demand for products P1 and P2 from 

each retailer during a distribution cycle is a 
constant number C. That is, 1 2 ,k kC d d= +  

1, 2, ,k n= K . The total demand τj during the 

distribution cycle for product Pj is obtained from 

the following equations. 

1

, 1,2
n

j jk
k

d jτ
=

= =∑                  (1) 

/ , 1, 2j jp n jτ= =                   (2) 

2.2 Supplies from the Manufacturer 
The manufacturer produces C units in every 

time period such that C = p1 + p2, where p1 and 

p2 are the average production rates of the two 

products as given by equation (2). The 

manufacturer, being the dominant partner, will 

set this production rate in the first period and 

will maintain it throughout the distribution 

cycle. 

The distributor receives his supplies at a 

constant rate of pj, j = 1, 2 units, in the Figure 1 

example, p1 = 63, p2 = 37 units in every time 

period s (s = 1, 2,…, n), but the demand from 

retailers does not necessarily match the supplies 

from the manufacturer. Therefore, the distributor 

may not be able to find a feasible schedule 

without incurring shortages even though the 

total supplies from the manufacturer to the 

distributor are equal to the total demand from 

the retailers for both the products. However, 

shortages or back-orders are not allowed and the 

total demand of a retailer should be satisfied in a 

single supply in the chosen time period. This 
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may require the distributor to carry some extra 

units in the beginning (period 0) to meet the 

demand from the retailers. Let I1,0 ≥ 0 and I2,0 ≥ 

0 be the initial inventory for products j = 1,2. It 

has to be noted here that Ij,0, j=1, 2 depends on 

the distribution sequence as explained in the 

paragraph below. 

Example: A five period (n = 5) problem is 

shown in Figure1. Here p1 = 63, p2 = 37 and C = 

100. The demand from retailers are D1 = {20, 36, 

86, 81, 92} and D2 = {80, 64, 14, 19, 8}. The 

distributor has 5! sequences to choose from; 

given the manufacturers production schedule. 

Suppose he chooses the distribution sequence 

shown in Figure1, i.e., ν = (1, 3, 4, 2, 5), in 

which the retailer who is served in sequence 

position1 has a demand of 20 units and 80 units 

for products P1 and P2 respectively. The 

distributor will be short of 43 units for product 

P2 and will have an excess 43 units of P1 as he 

receives 63 units of P1 and 37 units of P2 from 

the manufacturer. Hence, he must have a 

beginning inventory of 43 units of P2 to avoid 

shortages. Similar observations can be made for 

retailers served in subsequent positions. This 

example shows that if the distribution and 

production do not match in terms of the required 

quantities of the two products, the distributor 

will end up carrying inventory. 

The problem is formulated as a mixed 

integer program. The original formulation which 

is an assignment problem with side constraints is 

due to Manoj et al. (2008).  

Let xrs =1 if the distributor delivers to retailer 

r during period s. dj,r is the demand for product j 

for retailer r. Note that, the objective function 

for the integer program is the total inventory 

holding cost calculated by the end of inventory 

level in each period. The distributor has an 

available inventory of Ij,0 ≥ 0, j = 1, 2 for the two 

products at the beginning of period 1. Let us 

denote Ij,s to be the inventory at the end of 

period s. This when expressed in the average 

inventory level is given by the equation (14) to 

be developed in Section 3.  

Minimize 1 1 2 2
1 1

n n

s s
s s

h I h I
= =

+∑ ∑  

1

1,   1,...,
n

rs
s

x r n
=

= =∑                     (3) 

1

1,   1,...,
n

rs
r

x s n
=

= =∑                     (4) 

1, 1, 1 1 1
1

,   s  1,...,
n

s s r rs
r

I I p d x n−
=

= + − =∑   (5) 

2, 2, 1 2 2
1

,   s  1,...,
n

s s r rs
r

I I p d x n−
=

= + − =∑  (6) 

1, 0,   s  1,...,sI n≥ =                       (7) 

2, 0,   s  1,...,sI n≥ =                      (8) 

  {0,1},  s 1,..., ;    1,...,   rsx n r n∈ = =     (9) 

Constraints (3) and (4) ensure that exactly 

one retailer is served in each period. Constraints 

(5) and (6) find ending inventory of products P1 

and P2 in a period, s. 

2.3. Inventory Levels 
In period 1, pj units of product Pj are 

delivered by the manufacturer to the distributor 

and the distributor supplies dj,ν(1) the retailer 

served in position 1 of his distribution sequence. 

Recall, dj,ν(i) is the demand of the retailer who is 

served in position i of the distribution sequence 

ν. Therefore, the ending inventory of product Pj, 

j = 1, 2 at the end of period 1 will be Ij,1 = Ij,0 + 

pj − dj,ν(1), refer to Figure 2. Similarly, the ending 
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inventory of product Pj, at the end of period 2 

will be Ij,2 = Ij,1 + pj − dj,ν(2) = Ij,0 + 2 pj − dj,ν(1) − 

dj,ν(2). Similarly, for period n, the ending 

inventory of product j, (j =1, 2) will be: 

, ,( 1) , ( )j n j n j j nI I p d ν−= + −  

,0 , ( )1

n
j j j ss

I np d ν== + −∑           (10) 

It may be noted that Ij,n = Ij,0 since  

, ( )1

n
j j ss

np d ν==∑ . 

2.4. Inventory Holding Cost 
Let the distributor's inventory holding costs be 

h1 and h2 per time period (t) per unit for the two 

products respectively. The inventory holding 

cost is calculated based on the average inventory 

in a given period. Let Ij be the total average 

inventory of product Pj for a distribution cycle 

consisting of n periods, i.e., Ij is the summation 

of the average inventory of all n periods. 

Moreover, let Πj be the inventory holding cost 

for product j for the n periods, where, Πj = hjIj,  

j = 1, 2. Ij is found as discussed in the Lemma 

given below. It may be assumed, without loss of 

generality, that h1 ≥h2.  

Lemma 1 For the manufacturer's preferred 

production rate of pj,  j = 1, 2 in every period, 

the distributor's total average inventory for n 

periods is given by: 

,0
( 2)

2j j j
n n

I nI p
+= +  

, ( )
1

( 1 ) ,
n

j j s
s

h n s d ν
=

− + −∑ 1, 2j =         (11) 

Proof. As discussed in the previous section and 

shown in Figure 2, the ending inventory level 

for period i when the initial inventory is I1,0 is 

, ,0 , ( )1

i
j i j j j kk

I I iP d ν== + −∑ , j = 1, 2, i = 1, 

2, …,  n as discussed above. Correspondingly 

the beginning inventory for the period i is given 

by 
1

, ,0 , ( )1
( 1)

i
j i j j j kk

B I i p d ν
−
== + − −∑ , j = 1, 2. 

The average inventory in any period i is given 

by  

 

Figure 2 Inventory level for a distribution sequence ν 
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, ,
,0

( ) (2 1)

2 2
j i j i j

j

I B i p
I

+ −
= +   

, ( )
, ( )1 2

i j i
j kk

d
d

ν
ν=− +∑  

Hence the total average inventory for the n 

periods is given by, 

,0
1

(2 1)
  

2

n

j j j
i

i
I nI p

=

−= + ∑  

, ( )
, ( )

1 1 1 2

n i n
j v i

j v k
i k i

d
d

= = =
− +∑∑ ∑  

2

,0 , ( )
1

  ( 1 )  
2 2

n
j

j j j j v s
s

npn
I nI p n s d

=
= + − + − +∑  

,0 , ( )
1

( 1)
  ( 1 )

2

n

j j j j v s
s

n n
I nI p n s d

=

+= + − + −∑  

Hence the total average inventory holding 

costs for product j from period 1 to n denoted by 

Πj is given by: 

,0
( 1)

2j j j j
n n

h nI p
+⎡ ⎤Π = +⎢ ⎥⎣ ⎦

 

, ( )
1

( 1 ) ,
n

j j s
s

h n s d ν
=

⎡ ⎤
− + −⎢ ⎥

⎣ ⎦
∑ 1, 2j =   (12) 

3. Calculating Inventory Cost 
In this section we present the objective 

function and inventory constraints. For the ease 

of analysis we express p2 and d2,ν(s) in equation 

(12) in terms of p1 and d1,ν(s) respectively, i.e. p2 

= C − p1 and d1,ν(s) = C − d2,ν(s). 

3.1 Objective Function 
The objective is to find the values of Ij,0, j = 

1, 2 and a distribution sequence ν* = (ν(1), 

ν(2),…, ν(s),…, ν(n)), recall ν(s) is the retailer 

who is served in time period s, to minimize the 

total inventory holding cost under the constraints 

imposed by the manufacturer. Let Π be the total 

inventory holding cost for the two products 

together, from period 1 to period n. The 

objective function is to minimize: 
2

,0 , ( )
1 1

( 1)
( 1 )

2

n

j j j j j s
j s

n n
h nI p h n s d ν

= =

⎡ ⎤+⎡ ⎤Π = + − + −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  

(13) 

The objective function as stated in equation 

(13) can be rewritten as (see Appendix A for 

details): 

1 1,0 2 2,0 1 1 2
( 1)

[ ] ( )
2

n n
n h I h I p h h

+Π = + − −  

1 2 1, ( )
1

( )
n

s
s

h h sd ν
=

+ − ∑                    (14) 

Let us denote: 

1 1,0A nh I=  

2 2,0B nh I=  

[ ]1
1 2( 1)( )

2

p
X n n h h= − + −  

And 

1 2 1, ( )1
( )

n
ss

Y h h sd ν== − ∑  

The objective is, therefore, to minimize  

    Π = A+B+X+Y                    (15) 

It may be noted that in equation (15), X is a 

constant for a given problem. We observe from 

equation (15) that sequencing retailers in the 

nonincreasing order of the demand of product P1 

will reduce the Y part of the inventory cost, if h1 

> h2. However, this may result in an increase of 

the initial inventory cost part of the objective 

function (A and B), as shown later. Therefore, 

finding a sequence that minimizes the sum of 

costs Y, A and B is not straight forward. Based 

on the above expressions, we will identify some 

properties of the problem in the next section that 
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will be used in developing heuristic algorithms. 

3.2 Constraints 
Consider a distribution sequence ν = (5, 3, 4, 

1, 2) of the example problem in Section 2.2. In 

this sequence the minimum initial inventory 

required to satisfy the demand for retailer 1 is 

(92 − 63) = 29, while that for satisfying demands 

for retailer up to the second position is (92 + 86 

− 2 × 63 = 52). Let us denote the minimum 

inventory required to satisfy demand of retailer 

up to sequence position s as Ij,0,s j = 1, 2, s = 1, 

2, …, n. For any position s in a distribution 

sequence the following inventory constraints 

must be satisfied.  

1,0, 1 1, ( )
1

0,  1, 2, ,
s

s q
q

I sp d s nν
=

+ − ≥ =∑ K    (16) 

2,0, 2 2, ( )
1

0,  1,2, ,
s

s q
q

I sp d s nν
=

+ − ≥ =∑ K   (17) 

The minimum values of I1,0,s and I2,0,s to 

satisfy constraints (16) and (17) are given by 

equations (18) and (19) respectively by changing 

inequalities into equalities. 

1,0, 1, ( ) 1
1

,  1, 2, ,
s

s q
q

I d sp s nν
=

= − =∑ K     (18) 

2,0, 2, ( ) 2
1

,  1,2, ,
s

s q
q

I d sp s nν
=

= − =∑ K    (19) 

It may be noted that I1,0,s and I2,0,s may take 

both positive and negative values. A negative 

value means that no beginning inventory is 

required to satisfy the equation. 

Let ∆1,0 and ∆2,0 be the minimum beginning 

inventory levels that will satisfy all equations 

(18 and 19) for the two products P1 and P2 

respectively, where, 

( ){ }1,0 1,0,max  ,0 ,  1,2, ,sI s n∆ = = K    (20) 

( ){ }2,0 2,0,max  ,0 ,  1,2, ,sI s n∆ = = K   (21) 

∆j,0, j = 1,2 will be called  the binding value. 

It may be noted that ∆j,0 ≥ 0. 

4. Problem Properties 
The problem defined by the objective 

function (equation (15)) and constraints (16) and 

(17) can be formulated as a mixed integer 

program as given in Section 2.2. However, 

finding an optimal sequence is NP-hard as 

shown by Manoj et al. (2008). Therefore, we 

will develop heuristic algorithms to solve this 

problem. The heuristic algorithms are based on 

the analysis of the structure of the problem. The 

structural properties of the problem are stated in 

the form of several lemmas as given below. 

Lemma 2 In a distribution schedule ν that 

orders the retailers in nonincreasing order of 

demand of product P1 that is if d1,ν(s) ≥ d1,ν(s+1), s 

= 1, 2,…, n−1, then ∆2,0= 0. Similarly, if the 

distribution schedule ν is to order the retailers in 

nondecreasing order of demand of product P1 

that is if d1,ν(s) ≤ d1,ν(s+1), s = 1, 2,…, n−1, then 

∆1,0= 0. 

Proof. From equation (19) we know that for any 

s, s = 1,…, n, 

2,0, 2, ( ) 2
1

s

s v q
q

I d sp
=

= −∑  

2, ( )1
2, ( )

1

 

n
s v qq

v q
q

d
d s

n
=

=

⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑  

2, ( ) 2, ( )1 1
2, ( )

1

 

s n
s v q v qq q s

v q
q

d d
d s

n
= = +

=

⎡ ⎤+
⎢ ⎥= −
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑
∑  
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2, ( ) 2, ( )
1 1

   
s n

v q v q
q q s

n s s
d d

n n= = +

−= −∑ ∑  

Since d1,ν(s) ≥ d1,ν(s+1), we have d2,ν(s) ≤ d2,ν(s+1), 

s = 1, 2, …, n − 1. 

Now consider the case when s = n − 1. 

Substituting in the above we get: 
1

2,0, 1 2, ( ) 2, ( )
1

1 1n

n q n
q

n
I d d

n nν ν

−

−
=

−= −∑  

{ }2,0, 1 2, ( ) 2, ( )
1 1

n n n
n

I d d
n nν ντ−

−= − −  

{ }2,0, 1 2, ( )
1

n nI nd
n ντ− = −  

Since d2,ν(n) is the largest demand we get τ ≤ 

n d2,ν(n). The same result can be obtained for 

other s. Hence I2,0,s ≤ 0 ∀ s. Since ∆2,0 = max 

{( I2,0,s, 0), ∀ s }, we have∆2,0 = 0. 

Similarly we can show that ∆1,0 = 0 if d1,ν(s) ≤ 

d1,ν(s+1), s = 1, 2, …, n−1. Hence the proof. 

Lemma 3 For h1 > h2, the term Y in the 

objective function (equation(15)) is minimized 

by ordering retailers in nonincreasing order of 

demand of product P1; that is d1,ν(s) ≥ d1,ν(s+1), s = 

1, 2,…, n−1. 

Proof. Since 1, ( )1
,

n
ss

Y sd ν==∑  ordering 

retailers in the nonincreasing order of product P1 

demand will minimize Y and vice-versa. 

4.1 Problem Properties 
From Lemmas 2 and 3 we know, for example, 

if retailers are sequenced in the non increasing 

order of demand size, then terms B and Y 

decrease but according to Lemma 2 it will 

increase term A. In order to exploit the 

properties of the problem further, we 

interchange two retailers in a given sequence 

and study the behavior of the cost function. 

Consider two retailers in positions s and (s+1) 

in any sequence ν where d1,ν(s) > d1,ν(s+1). If the 

positions of these two retailers in the sequence 

are interchanged then the following 

Observations are made. 

Observation 1 The minimum beginning 

inventory I1,0,s required to satisfy the constraint 

for period s for product P1 will decrease by an 

amount (d1,ν(s) − d1,ν(s+1)). 

Proof. Let 
1

1, ( )1

s
qq

K d ν
−
==∑ and let d1,ν(s) and 

d1,ν(s+1) be the demand of the retailers served at 

the periods s and (s+1), (s+1) ≤ n, respectively 

in the sequence ν. 

1,0, 1, ( ) 1s v sI K d sp= + −                   (22) 

( )1,0, 1 1, ( ) 1, ( 1) 11s v s v sI K d d s p+ += + + − +  (23) 

After interchange the corresponding values 

are: 

1,0, 1, ( 1) 1s v sI K d sp+′ = + −                 (24) 

( )1,0, 1 1, ( 1) 1, ( ) 11s v s v sI K d d s p+ +′ = + + − +  (25) 

Note that all other I1,0,j, j = 1, 2,…, n –{s, 

(s+1)} values will remain unaffected after this 

interchange. The decrease in I1,0,s as a result of 

the interchange is given by I1,0,s – I΄1,0,s which is 

equal to d1,ν(s) − d1,ν(s+1). Since d1,ν(s) > d1,ν(s+1), 

I1,0,s decreases as a result of this interchange. 

Hence the proof. 

Observation 2 The minimum beginning 

inventory I1,0,(s+1) required to satisfy the 

constraint for period (s+1) for product P1 will 

remain unchanged due to the interchange of  

d1,ν(s) and d1,ν(s+1). 

Proof. I1,0,(s+1) before and after the interchange 

are given by equations (23) and (25) respectively, 

which are the same. Hence the proof. 

Observation 3 The value of ∆1,0 may either 
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decrease or remain unchanged after the 

interchange. 

Proof. We know from Lemma 2, I1,0,(s+1) remains 

unchanged. Let δk represents the maximum I1,0,j, 

j = {1,2,…,n} − {s}. Note that δk will remain 

unchanged after the interchange. Let δs 

represents I1,0,s after the interchange. 

{ }1,0 max ,k sδ δ∆ =  

From Lemma 1 we know that δs decreases. If 

δk ≥ δs then ∆1,0 remains unchanged, if δk < δs 

then ∆1,0 decreases. 

Observation 4 The minimum beginning 

inventory I2,0,s required to satisfy the constraint 

for period s for product P2 will increase by an 

amount d1,ν(s) − d1,ν(s+1) which is also equal to 

d2,ν(s+1) – d2,ν(s). 

Proof. The corresponding equations I2,0,s for the 

product 2 before and after the interchange are 

given below. Here 
1

2, ( )1

s
qq

K d ν
−
==∑  

2,0, 2, ( ) 2s v sI K d sp= + −                      (26) 

2,0, 1, ( ) 2s v sI K C d sp= + − −                  (27) 

( )2,0, 1 1, ( ) 1, ( 1) 22 1s v s v sI K C d d s p+ += + − − − +   

(28) 

After the interchange: 

2,0, 1, ( 1) 2s v sI K C d sp+′ = + − −                (29) 

( )2,0, 1 1, ( 1) 1, ( ) 22 1s v s v sI K C d d s p+ +′ = + − − − +  

(30) 

Here I2,0,s – I΄2,0,s = d1,ν(s+1) − d1,ν(s). Since d1,ν(s) 

> d1,ν(s+1), we have I2,0,s – I΄2,0,s < 0. A negative 

decrease implies a positive increase. Hence the 

proof. 

Observation 5 The minimum beginning 

inventory I2,0,(s+1) required to satisfy the 

constraint for period (s+1) for product P2 will 

remain unchanged due to the interchange of d1,ν(s) 

and d1,ν(s+1). 

Proof. Equations (28) and (30) represent the 

I2,0,(s+1) values before and after the interchange 

respectively. They are equal and the proof for 

the Observation. 

Observation 6 The value of ∆2,0 may either 

increase or remain unchanged after the 

interchange. 

Proof. As before, δk represents the maximum 

I2,0,j, j= {1,2,…,n} − {s}, Let δs represents I2,0,s 

after the interchange. 

{ }2,0 max ,k sδ δ∆ =  

We know from Observation 4 that δs 

increases. If δk ≥ δs then ∆2,0 remains unchanged, 

if δk < δs, then ∆2,0 increases. 

Observation 7 The interchange of d1,ν(s) and 

d1,ν(s+1) may decrease term A in the objective 

function or it may remain unchanged. 

Proof. From Lemma 3, we know that, ∆1,0, 

which is the minimum inventory to satisfy all 

I1,0,s equalities may decrease; the proof follows. 

Observation 8 The term B in the objective 

function may increase or remain unchanged 

when d1,ν(s) and d1,ν(s+1) are interchanged. 

Proof. Follows from Observation 6. An 

argument similar to Observation 7 applies here 

also. 

Observation 9 The term Y in the objective 

function will increase due to the interchange of 

d1,ν(s) and d1,ν(s+1). 

Proof. Follows from Lemma 3. 

These properties are used to develop a 

heuristic (H2) which is given in the following 

section 

5. Heuristic Algorithm 
We propose two heuristics, H1 and H2, for 
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finding a good solution to the problem. Further, 

these solutions are used in the initial population 

of Genetic Algorithm which uses knowledge 

based crossover proposed by Aggarwal et.al 

(1997), to obtain good solutions quickly.  

H1 is a greedy heuristic and H2 is a pairwise 

interchange heuristic. However due to the 

combinatorial nature of the problem, the 

proposed heuristics many times fail to explore 

the solution space for global minima, hence we 

use Genetic Algorithm (GA) to conduct a 

thorough search of the solution space. The 

knowledge based crossover helps to improve the 

quality of offsprings produced. These techniques 

are found to be effective in getting a good 

solution quickly. 

5.1 Heuristic H1 
H1, constructs the distribution sequence by 

adding retailers one after another sequentially. 

For an empty sequence position (period in the 

problem), it chooses the retailer which gives the 

minimum inventory value for that period. The 

heuristic terminates when all retailers are 

sequenced. Before we present the heuristic, the 

notations used in it are explained in the 

following paragraph. 

list is the set of retailer demands (of product 

P1) that are scheduled, whereas D1 − list is the 

set of unscheduled retailer demands. Let Ij,k be 

the inventory at the end of iteration k for product 

j and Ej,k(d1,i) be the ending inventory in the 

iteration k given that retailer i from D1 − list is 

scheduled. Here iteration involves selecting 

retailers based on the end of period inventory 

value in that period. Note that d2,i = C − d1,i. H1 

schedules the retailer with minimum demand 

first (Step 1). The sequence is updated with a 

retailer from D1 − list. The retailer appended will 

give the minimum inventory for that sequence 

position (Step 5). In a period k while doing the 

iteration, the end-of-period inventory value for a 

retailer is negative (shortage) for that position 

then the absolute value of the shortage will be 

factored by (k−1) (Step 3). This is done because 

shortage is not allowed, and the initial inventory 

should be increased by the shortage amount so 

that the distributor can make supply for the 

retailer. The selection will be done based on the 

new value. The heuristic is given below: 

Step 1: list = 0; fix the retailer with the 

minimum demand for the product 1 first in the 

sequence, add the minimum demand (d1,1) to the 

list. 

( ){ }1,0 1,1 1max ,0 ,  I d p= −  

( ){ }2,0 1,1 2max ) ,0I C d p= − − , 

1,1 1,0 1 1,1 2,1 2,0 2 1,1 ,  ( )I I p d I I p C d= + − = + − −  

set k = 1. 

Step 2: k ← k+1, Find E1,k(d1,i) = I1,(k-1) + p1− d1,i, 

and E2,k(d1,i) = I2,(k-1) + p1− (C − d1,i) for all d1,i in 

D1 − list. 

Step 3: If any Ej,k(d1,i) < 0, i = 1, 2,…, |D1 − list |, 

j = 1,2; Ej,k(d1,i) = (k−1)| Ej,k(d1,i) |.  

Step 4: Calculate Ik(d1,i) = h1 E1,k(d1,i) + h2 

E2,k(d1,i) where i = 1, 2,…, | D1 − list |, d1,i ∈  D1 

− list, go to Step 5.  

Step 5: Find min { Ik(d1,i), i = 1, 2,…, | D1 − list |} 

and let the corresponding demands for the two 

products be (d1,i, (C − d1,i)), and let d1,z = d1,i and 

d2,z = (C − d1,i). If necessary, break tie arbitrarily. 

Step 6: If any Ej,k(d1,z) < 0, i = 1, 2, then Ij,i ←Ij,i 

+ | Ej,k(d1,z) |, i = 0, 1, 2,…, (k−1), j = 1, 2, update 

list with d1,z. Find Ij,k = Ij,(k-1) + pj − dj,z, j = 1,2. 

Step 7: If k=n, Stop, ν = list; else go to Step 2. 
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Table 1 shows the heuristic applied to the 

example problem given in Figure 1 with h1= 

h2=1. The Step 1 assigns the retailer with the 

smallest demand for product 1 first in the 

sequence. The set list now contains element d1,ν(1) 

= d1,1 = 20. The next step is to find E1,k(d1,i) and 

E2,k(d1,i) values for all elements in D1 − list. It is 

shown in column 3 of Table 1, while column 4 

shows all Ik values. For example, refer to the 

row k = 3, (E1,3(92), E2,3(92)) values 

corresponding to demand 92 are (-9,52). From 

Step 3, we get E1,3 (92) = (3−1)×|−9| = 18. 

Hence E3(92), corresponding to demand 92, now 

becomes 18+52 = 70 (shown in Column 4). The 

demand pair (d1,z , d2,z) which corresponds to the 

minimum Ik values are shown in column 5. Here 

in this example the complete sequence obtained 

is ν1 = (ν (1), ν (2),…,ν (n)) = (1, 3, 4, 2, 5). 

5.2 Heuristic H2 
This heuristic starts by sequencing retailers 

so that their demand for product P1 are in 

nonincreasing order. This will result in ∆2,0 = 0, 

as we know from Lemma 2. Since h1 ≥ h2 it is 

more important to minimize ∆1,0 than ∆2,0, the 

heuristic is achieving the same. Interchanging 

adjacent retailers in the position with largest I1,0,s 

may reduce ∆1,0 as proven in Lemma 3, but ∆2,0 

may increase (Observation 6). The heuristic 

finds the binding value ∆1,0 for a sequence and 

pairwise interchange adjacent demands in 

position with the largest I1,0,s value until the 

terminal condition is encountered as explained 

in the following steps. 

Step 1: Obtain the initial sequence ν0 by 

ordering the retailers in the nonincreasing order 

of demand for product P1, that is, ν0 = (ν (1), ν 
(2),…,ν (n)), where, d1,ν(1) ≥ d1,ν(2) ≥ … ≥d1,ν(n). 

Let Π0 be the inventory cost of this sequence. 

Set iteration number z = 1. 

Step 2: Find the binding value ∆1,0 and the 

sequence position (or positions) s at which this 

occurs. There may be several sequence positions 

that have the same value of I1,0,s. Step 4 takes 

care of multiple sequence positions. 

Step 3: Go to Step 7 if ∆1,0 ≤ ε (ε is a small 

number, in our experiments we use ε = 3), 

otherwise Go to Step 4. 

Step 4: Interchange retailers in positions s and 

s+1. In case of multiple values of s, make all 

interchanges simultaneously. 

Step 5: The interchange(s) in Step 4 give a new 

distribution sequence νz, where z is the iteration 

number. Let Πz be the cost of the sequenceνz. 

Step 6: Set z ← z+1. Go to Step 2. 

Step 7: STOP. A satisfactory sequence has been 

found. 

Step 8: Select the sequence with minimum value 

of Πz. 

Once the distribution sequence for P1 is 

obtained then that for P2 will follow from our 

assumption that d2,ν(s) = C – d1,ν(s). 

An example for the first two iterations of the 

heuristic H2 is illustrated in Table 2. In this 

example, n = 15, h1 = 1.5, h2 = 1, p1 = 58. In the 

beginning (Step 1) retailers are arranged in the 

nonincreasing order of demand size. ∆1,0 is given 

by position 7 i.e ∆1,0 = I1,0,7, so the retailers at 

positions 7 and 8 are mutually interchanged. 

These steps are repeated until ∆1,0 ≤ 3. Figure 3 

shows ∆1,0 and Inventory values as the iteration 

progresses. 

As mentioned above in order to do a 

thorough search of the solution space we use 

Genetic Algorithm. 
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Table 1 Heuristic H1 for the example problem 

k D1−list (E1,k, E2,k) Ik (d1,z, d2,z) list 

2 {36,86,81,92} (70, −27) 
(20,23) 
(25,18) 
(19,29) 

97 
43 
43 
43 

(86,14) {20,86} 

3 {36,81,92} (47, −4) 
(2,41) 

(−9,52) 

55 
43 
70 

(81,19) {20,86,81} 

4 {36,92} (29,14) 
(−27,70) 

43 
151 

(36,64) {20,86,81,36} 

5 {92} (0,43) 43 (92,8) {20,86,81,36,92} 

 

Table 2 Illustration of heuristic H2 

Iteration 1 Iteration 2 Position 
number, s 

d1,v(s) I1,0,s d1,v(s) I1,0,s 

1 94 36 94 36 

2 94 72 94 36 

3 92 106 94 36 
4 86 134 94 36 
5 82 158 82 158 

6 79 179 79 179 

7 72 193 56 177 

8 56 191 72 191 

9 52 185 52 185 

10 45 172 45 172 

11 39 153 39 153 

12 36 131 36 131 

13 20 93 20 93 

14 13 48 13 48 

15 10 0 10 0 

 Inventory = 3417 Inventory = 3380 

 

Genetic Algorithm 

GA's are search techniques which are 

inspired by Darwin's theory of evolution. The 

evolution preserves the best sequences in the 

current generation and carries them to the next 

generation. In exploring the solution space, GA 

uses randomization and directed smart search 

methods to obtain near optimal solutions. 

In our problem, a chromosome is a 

distribution sequence. Each chromosome is 

characterized (merited) by its fitness value (here 

by its inventory value). GA emulates evolution 
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Figure 3 Evolution of delta and inventory

where each new iteration is a generation in the 

GA terminology. In GA environment a 

generation of chromosomes consists of 

surviving chromosomes, usually the fitter ones 

from the previous generation, plus new child 

chromosomes produced in the current iteration 

through crossover. While GA is iterating, the 

population size is kept constant from one 

generation to the next. A crossover combines 

some features of two parent chromosomes and 

the child inherits characteristics from both 

parents. As GA iterates, fittest chromosomes 

reproduce and the least fit die. The initialization 

of GA is done as follows. We begin by randomly 

generating distribution sequences, for all values 

of n tested, from a U[10,95] distribution. Twenty 

three such sequences are generated, and the two 

heuristic (obtained from H1 and H2) sequences 

are added to make an initial population of 25. 

Selection 

We use Roulette wheel selection method for 

selecting parents for crossover. The selection is 

based on the fitness value; higher the fitness 

value of a chromosome, better are the chances 

that the chromosome gets selected. A random 

number is generated and the chromosome whose 

fitness value spans the random number is 

selected. Let's say, for example, the fitness value 

of the chromosome 1 and 2 are 0.1 and 0.3 

respectively and let the random number 

generated has a value 0.15. In this case the 

chromosome 2 will span (0.1, 0.4) the random 

number and will get selected. 

Crossover and Mutation 

We use single point crossover method in 

which two offsprings are produced by mating 

two parents. The crossover point is randomly 

generated. Up to the crossover point one 

offspring will have the same sequence as that of 

one parent. Similarly the other child 

chromosome will get the same sequence as that 

of the second parent. To fill the remaining alleles 

(customer demand positions) in the first child 

chromosome we search the second parent’s 
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chromosome from the left-most allele to the 

rightmost allele sequentially. When an 

unscheduled retailer demand is found, we copy 

this to the first offspring chromosome. We 

proceed this way until all remaining alleles are 

filled.  The second child chromosome is 

produced like the first child chromosome using 

the first parent to fill all empty alleles after 

inheriting a part directly from the second parent 

up to the crossover point. Figure 4 shows a 

single point crossover method. 

 

Figure 4 Illustration of single point crossover 

With the aim to diversify the population, 

expecting quality child chromosomes, of the two 

child chromosomes thus produced through 

crossover, one will enter the population as it is, 

while the other child is optimized to improve the 

fitness value (Aggarwal et. al. 1997). The 

optimized crossover is done as explained below. 

In the child chromosome to be optimized, 

identify all adjacent pairs such that d1,ν(s) > 

d1,ν(s+1). Select each identified pair, one at a time 

do pairwise interchange and find the binding 

constraint ∆1,0 for the resulting sequence. Undo 

the change and get back the original sequence. 

Similarly find ∆1,0 for all other sequences which 

are obtained as a result of interchanging the 

demands which satisfies the condition d1,ν(s) > 

d1,ν(s+1) in the original sequence. Select that 

sequence which gives the minimum ∆1,0 and 

interchange the corresponding retailer pairs and 

an optimized child chromosome is obtained. In 

case of a tie in ∆1,0 select that sequence which 

gives the minimum inventory cost. This 

optimization is based on Lemma 3. 

An example of the optimizing process of 

child chromosome is shown in Table 3. Let the 

child chromosome be ν = (45, 94, 36, 10, 94, 39, 

82, 79, 20, 13, 92, 86, 56, 72, 52) for product P1 

and that for product P2 be ν = (55, 6, 64, 90, 6, 

61, 18, 21, 80, 87, 8, 14, 44, 28, 48). The 

inventory value for this child chromosome is 

1638. The first column in Table 3 shows those 

demand pairs from the original sequence which 

satisfies the condition d1,ν(s) > d1,ν(s+1). Column 2 

gives ∆1,0 values when the demands are 

interchanged. In this example interchanging 94 

and 36 will give the minimum ∆1,0 value. 

Interchange this demand pair and obtain the 

optimized child chromosome ν = (45, 36, 94, 10, 

94, 39, 82, 79, 20, 13, 92, 86, 56, 72, 52). 

Sequence for P2 follows from that of P1. The 

inventory cost corresponding to the new 

sequence obtained is 1487. We obtain an 

optimized child which has a lower inventory 

cost than the original one (1638). Optimized 

crossover not only diversifies the population but 

also helps in the fast convergence of the GA 

algorithm. The quality of the solution also 

improves as a result of this optimization process. 

Mutation is done occasionally by adjacent 

pairwise interchange of alleles (randomly 

selected) in offspring chromosome. Whether a 

chromosome undergoes mutation or not depends 

on the mutation probability Pm. A random 

number is generated and if that number is less 

than Pm, then the offspring will undergo 

mutation. 
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Table 3 Optimized crossover 

Demand pair ∆1,0 Inventory cost 

(94, 36) 15 1487.0 

(36, 10) 23 1651.0 

(94, 39) 23 1665.5 

(82, 79) 23 1639.0 

(79, 20) 23 1667.5 

(20, 13) 23 1641.0 

(92, 86) 23 1641.0 

(86, 56) 23 1653.0 

(72, 52) 23 1648.0 

5.3 GA Algorithm 
The following parameters are defined for the 

GA algorithm. ‘GEN’ represents the maximum 

number of generations in the GA, we use GEN = 

10,000. The generation index is specified by 

variable gn. PS represents the population size. 

The algorithm keeps track of the best sequence 

ν* obtained so far and records fitness value, fi, of 

each sequence i obtained. Fifty best sequences 

will be fed to the following generation from the 

current generation. This way the best solution 

will be preserved from one generation to the 

next. The best sequence after GEN generations 

ν* will be the overall best sequence. 

Step 1: Set n = 1. 

Step 2: Generate 23 random sequences and add 

2 heuristic solutions, obtained from H1 and H2, 

to make an initial population size of 25 (PS=25), 

ν* = ν1 (arbitrary assignment). 

Step 3: Evaluate each sequence νi, i = 1, 2,…, 

PS, and find fitness value fi (= 1
/

PS
i jj=Π Π∑ ) of 

each of them, where Πi is the inventory cost of 

the ith sequence. Order the chromosomes in the 

nonincreasing order of their fitness values. 

Step 4: Select two parents as explained before 

from the ordered population of generation gn 

and crossover to produce two child 

chromomosomes as explained in Section 5. 

Mutate the child if the random number 

generated is less than Pm. Fifty chromosomes are 

produced by mating 25 parents. The best twenty 

five chromosomes (PS = 25) in generation gn 

will be members of generation g(n+1). 

Step 5: Sort all sequences in nonincreasing 

order of fitness values. Find the current best 

inventory value, ν*n. If ν*n < ν*, then set ν*=ν*n. 

Preserve the top PS=25 members and delete the 

rest. 

Step 6: If n = GEN go to step 8 or else go to 

Step 7. 

Step 7: Set n ← n+1 and go to Step 3. 

Step 8: ν* is the best sequence obtained. 

6. Computational Study 
In this section we evaluate the performance 

of the heuristic presented in the previous section 

and establish the worth of doing the 

computational experiments and the justification 

to use them to solve industrial dimension 

problems. 

The MIP given in Section 2.2 is solved for n 

= 15, 20, 25, 30 using CPLEX 8.01. The 

solution time depending on the problem 

instances (Di and n) are between 0.11s to 3hrs 

with an optimality gap of around 1.6% on 

average, in an Intel Pentium Xeon Dual 

Processor, 2.4 Ghz computer. However for larger 

problems (n > 30) the optimality gap was around 

15%. On the other hand the Genetic Algorithm 

took just 2 minutes to solve a 30 period problem 

in an Intel Pentium IV processor IBM machine 

with 512 MB RAM. CPLEX took more than 
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three hours to reach an optimality gap of 2%. In 

order to measure the performance of GA, we ran 

both GA and CPLEX for 2 minutes. The results 

are given in Table 6 (in Appendix B). Of the 60 

instances tested, GA performed better in 24 

instances while in 14 instances CPLEX 

performed better, and there was a tie in 22 

instances. When GA performed better the 

solutions were on an average 3.96% better than 

CPLEX, on the other hand it was 0.93% when 

GA performed better. From the Table 6 it can be 

observed that for larger problem instances GA's 

performance was better. These factors further 

justified the usage of heuristics in our problem. 

Hence lesser computational time and good 

quality solutions from GA make the heuristic 

method more attractive than finding an optimal 

solution using CPLEX. The heuristic is tested 

for its performance for different set of Di i= 1, 2 

values (integer) generated randomly from 

U[10,90]. For a particular n five different sets of 

data are generated. The performance of the 

heuristics H1, H2 and GA for each data set is 

compared with the lower bound of the MIP 

solved using CPLEX. The Table 4, shows the 

performance (deviation from lower bound) of 

GA for different data sets. Columns H1, H2 and 

GA in Table 4 gives the inventory cost values of 

the best solution obtained from heuristics H1, 

H2 and Genetic Algorithm respectively. Column 

“lwrbd” is the optimal value of inventory 

obtained by solving the MIP using CPLEX. “% 

dvn from lwrbd” column shows the percentage 

deviation of the GA solution from the CPLEX 

solution. Except in one instance where the GA 

gives a solution which is 15.86% (shown bold in 

the Table 4) above the lower bound, the 

performance of the GA is very promising. The 

worst case deviation is just 2.63%. Table 5 

shows the overall performance of the heuristics 

which is given by the percentage deviation 

(average of 5 data sets tested for each n) from 

the lower bound. From Table 5 we can observe 

the worst case heuristic solution is around 27% 

above the lower bound. However, by conducting 

a thorough search of the solution space using 

GA with the initial population consisting of the 

sequences from H1 and H2, the quality of the 

solution improves considerably. In the worst 

case scenario the average deviation is around 

3.5% above the lower bound. 

7. Model Extension 
We show below as to how to extend the integer 

program model to three products types. Similarly, 

the model can be extended to any number of 

product types. It has to be noted that number of 

integer variables is n and it will not increase due 

to the increase in the number of product types. 

We can also extend our GA to any number of 

product types by modifying Step 3: Evaluate 

each distribution sequence νi, i=1, 2, …, PS, and 

find fitness value 
1

 ( / )
PS

i i j
j

f
=

= Π Π∑  of each of 

them, where Πi is the inventory cost of the ith 

sequence. Order the chromosomes in the 

nonincreasing order of their fitness values. The 

fitness function fi for each sequence νi will be 

calculated by considering inventories for all 

product types. 

 

Minimize  

1 1, 2 2, 3 3,1 1 1

n n n
s s ss s s

h I h I h I= = =+ +∑ ∑ ∑  

s.t. 
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1

1,   1,...,
n

rs
s

x r n
=

= =∑                     (31) 

1

1,   1,...,
n

rs
r

x s n
=

= =∑                     (32) 

1, 1, 1 1 1
1

,   1,...,
n

s s r rs
r

I I p d x s n−
=

= + − =∑    (33) 

2, 2, 1 2 2
1

,   1,...,
n

s s r rs
r

I I p d x s n−
=

= + − =∑   (34) 

3, 3, 1 3 3
1

,   1,...,
n

s s r rs
r

I I p d x s n−
=

= + − =∑   (35) 

1, 0,   1,...,sI s n≥ =                       (36) 

2, 0,   1,...,sI s n≥ =                       (37) 

3, 0,   1,...,sI s n≥ =                       (38) 

{ }0,1 ,   1,.... ;   1,...,rsx s n r n∈ = =        (39) 

Table 4 Performance of heuristics. Columns H1, H2, GA and lwrbd gives inventory cost in dollar values 

 

n H1 H2 GA 
 
lwrbd 
 

%  
dvn   
from  
lwrbd 

n H1 H2 GA 
 
lwrbd 
 

%  
dvn   
from  
lwrbd 

h1=1, 
h2=1 

15 

660.0 
615.0 
600.0 
720.0 
630.0 

660.0 
630.0 
600.0 
720.0 
660.0 

660.0 
615.0 
600.0 
720.0 
630.0 

660.0 
615.0 
600.0 
720.0 
630.0 

0.00 
0.00 
0.00 
0.00 
0.00 

20 

920.0 
800.0 
800.0 
920.0 
800.0 

920.0 
800.0 
800.0 
900.0 
960.0 

920.0 
800.0 
780.0 
900.0 
800.0 

920.0 
800.0 
780.0 
900.0 
800.0 

0.00 
0.00 
0.00 
0.00 
0.00 

h1=1, 
h2=1 

25 

1450.0 
1150.0 
975.0 
1250.0 
1125.0 

1150.0 
1125.0 
1050.0 
1150.0 
1200.0 

1125.0 
1075.0 
975.0 
1075.0 
1000.0 

1125.0 
1075.0 
975.0 
1075.0 
1000.0 

0.00 
0.00 
0.00 
0.00 
0.00 

30 

1170.0 
1650.0 
1140.0 
1380.0 
1470.0 

1470.0 
1410.0 
1260.0 
1410.0 
1560.0 

1350.0 
1290.0 
1170.0 
1230.0 
1200.0 

1350.0 
1290.0 
1140.0 
1230.0 
1200.0 

0.00 
0.00 
2.63 
0.00 
0.00 

h1=1.5, 
h2=1 

15 

766.0 
707.5 
795.0 
824.5 
734.0 

810.0 
795.0 
721.0 
851.0 
811.0 

759.0 
703.0 
689.5 
805.5  
730.0 

747.0 
700.0 
682.0 
801.0 
717.0 

1.61 
0.43 
1.10 
0.56 
1.81 

20 

1215.5 
915.5 
893.5 
1308.5 
995.0 

1111.5 
993.0 
965.0 
1100.5 
1205.0 

1031.5 
901.5 
890.5 
1034.0 
941.0 

1030.0 
896.0 
885.5 
1032.0 
939.0 

0.15 
0.61 
0.56 
0.19 
0.21 

h1=1.5, 
h2=1 

25 

1579.0 
1303.0 
1235.5 
1570.5 
1227.0 

1395.0 
1419.0 
1295.5 
1391.5 
1909.5 

1287.0 
1218.0 
1137.0 
1218.0 
1195.5 

1270.0 
1210.0 
1132.0 
1213.0 
1175.5 

1.34 
0.66 
0.44 
0.41 
1.66 

30 

2014.5 
1559.5 
1392.5 
2103.5 
1493.0 

1793.5 
1751.5 
1586.5 
1720.0 
1909.0 

1558.5 
1470.0 
1332.0 
1463.0 
1406.5 

1553.0 
1459.0 
1323.0 
1463.0 
1405.0 

0.35 
0.75 
0.68 
0.00 
0.11 

h1=2, 
h2=1 

15 

872.0 
821.0 
852.0 
929.0 
857.0 

947.0 
960.0 
842.0 
967.0 
947.0 

834.0 
787.0 
764.0 
882.0 
804.0 

834.0 
785.0 
764.0 
882.0 
804.0 

0.00 
0.25 
0.00 
0.00 
0.00 

20 

1391.0 
1055.0 
1007.0 
1573.0 
1150.0 

1303.0 
1166.0 
1130.0 
1301.0 
1440.0 

1142.0 
1008.0 
992.0 
1170.0 
1084.0 

1142.0 
992.0 
991.0 
1166.0 
1084.0 

0.00 
1.61 
0.10 
0.34 
0.00 

h1=2, 
h2=1 

25 

1765.0 
1426.0 
1421.0 
1766.0 
1608.0 

1641.0 
1674.0 
1541.0 
1633.0 
1733.0 

1435.0 
1354.0 
1285.0 
1454.0 
1372.0 

1428.0 
1351.0 
1283.0 
1255.0 
1362.0 

0.49 
0.22 
0.16 
15.86 
0.73 

30 

2259.0 
1739.0 
1585.0 
2429.0 
1801.0 

2087.0 
2093.0 
1889.0 
2030.0 
2233.0 

1809.0 
1642.0 
1511.0 
1634.0 
1632.0 

1780.0 
1642.0 
1511.0 
1634.0 
1626.0 

1.63 
0.00 
0.00 
0.00 
0.37 
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Table 5 Summary of performance of heuristics for different values of holding costs 

h1 = 1,  h2 = 1 h1 = 1.5,  h2 = 1 h1 = 2,  h2 = 1  

H1 H2 GA H1 H2 GA H1 H2 GA 

15 0.0 1.44 0.00 2.59 9.42 1.10 6.82 14.69 0.05 

20 0.96 4.51 0.00 10.77 12.54 0.35 14.15 18.02 0.41 

25 12.93 8.31 0.00 14.30 23.06 0.90 19.74 23.36 3.49 

30 18.74 14.67 0.00 18.38 21.78 0.38 19.43 26.26 0.40 

 

8. Conclusions 
Finding an optimal schedule for the 

non-dominant partner in a two stage supply 

chain with a dominant upstream partner is 

NP-Hard. We attempt to solve large size 

problem in this research as the size of the integer 

programming problem that can be solved by 

CPLEX is limited. We propose two heuristics, a 

greedy heuristic and an interchange heuristic. 

The heuristics are based on the properties of the 

problem. Since the worst case average 

performance of these heuristics are around 20% 

we use sequences obtained from these heuristics 

in the initial population of Genetic Algorithm. 

Further, we used optimized crossover 

technique to improve the quality of the solution 

and reduce the computation time. The 

performance of the Genetic Algorithm is 

extremely good for the problem sizes tested with 

an average gap of less than 3.5% from the 

optimal solution for practical size problems. 

Several important research issues remain 

open for future investigation. First, extending 

the model to allow for less than one truck load 

demand by the retailers. The less than one truck 

load demand may mean combining retailers' 

demand in to full truck load shipments which in 

turn requires routing decision. While we study 

the objective of minimizing inventory at the 

distributor, there are also other customer-related 

objectives that are relevant. These include 

minimization of the number of late deliveries 

and the total tardiness of the deliveries. 
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Appendix A 

2 1,p C p= −  2, ( ) 1, ( )v s v sd C d= −  and 1 1, ( )1

n
v ss

dτ ==∑ , we can write the following:  

( )
1 1 1,0 1

1

2

n n
h nI pπ

+⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

( )1 1, ( )
1

1
n

v s
s

h n s d
=

⎧ ⎫⎪ ⎪− + −⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

( )
1 1,0 1

1

2

n n
h nI p

+⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭

( )1 1 1, ( )
1

1
n

v s
s

h n sdτ
=

⎧ ⎫⎪ ⎪− + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑  
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( ) ( )2 2 2,0 1

1

2

n n
h nI C pπ

+⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

( ) ( )2 1, ( )
1

1
n

v s
s

h n s C d
=

⎧ ⎫⎪ ⎪− + − −⎨ ⎬
⎪ ⎪⎩ ⎭
∑  

( ) ( )
2 2,0 1

1 1

2 2

n n n n
h nI C p

+ +⎧ ⎫⎪ ⎪= + −⎨ ⎬
⎪ ⎪⎩ ⎭

( ) ( ) ( )2 1 1, ( )
1

1
1 1

2

n

v s
s

n n
h n n C C n sdτ

=

⎧ + ⎫⎪ ⎪− + − − + +⎨ ⎬
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∑  

{ }1 2 1,0 1 2,0 2n I h I hπ πΠ = + = +
( ) ( ) ( )

1 1 2 2

1 1

2 2

n n n n
p h h h C

+ +
+ − +  

( ) ( ) ( )
1 1 2 2

1
1

2

n n
n h h h Cτ

+
− + − − ( )1 2 1, ( )

1

n

v s
s

h h sd
=

+ − ∑  

{ } ( ) ( )1,0 1 2,0 2 1 1 2

1
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n n
n I h I h p h h

+
= + + − ( ) ( ) ( )1 1 2 1 2 1, ( )

1

1
n
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s

n h h h h sdτ
=

− + − + − ∑  

{ } ( ) ( )1,0 1 2,0 2 1 1 2

1
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n n
n I h I h p h h

+
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1

1
n
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s

n n p h h h h sd
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n n
n I h I h p h h

+
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s
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=
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Appendix B 

Table 6 Comparing the performance of GA and CPLEX after 2 minutes of CPU time 
CPLEX 

Max.CPU Time=2 mins 
CPLEX 

Max.CPU Time=2 mins 
 
 n 

 
lwrbd 
 

GA 
Result Opt. Gap 

n 
 
lwrbd 
 

GA 
Result Opt. Gap 

h1=1, 
h2=1 

15 

660.0 
615.0 
600.0 
720.0 
630.0 

660.0 
615.0 
600.0 
720.0 
630.0 

660.0  
615.0  
600.0  
720.0 
630.0 

0.59  
0.86  
0.77  
0.48  
1.06  

20 

920.0 
800.0 
780.0 
900.0 
800.0 

920.0 
800.0 
780.0 
900.0 
800.0 

920.0  
800.0  
800.0  
900.0  
800.0  

4.72  
1.78  
11.69  
4.72  
7.95 

h1=1, 
h2=1 

25 

1125.0 
1075.0 
975.0 
1075.0 
1000.0 

1125.0 
1075.0 
975.0 
1075.0 
1000.0 

1125.0  
1075.0  
975.0  
1075.0 
1205.0 

30.91  
13.06  
9.53  
0.48  
5.00 

30 

1350.0 
1290.0 
1140.0 
1230.0 
1200.0 

1350.0 
1290.0 
1170.0 
1230.0 
1200.0 

1350.0  
1290.0  
1170.0  
1260.0  
1200.0 

71.82  
91.14  
49.83  
42.86  
27.5 

h1=1.5, 
h2=1 

15 

747.0 
700.0 
682.0 
801.0 
717.0 

759.0 
703.0 
689.0 
805.5 
730.0 

747.0  
700.0  
682.0  
801.0 
717.0 

1.07  
1.29  
1.3  
0.00 
1.53 

20 

1030.0 
896.0 
885.5 
1032.0 
939.0 

1031.5 
901.5 
890.5 
1034.0 
941.0 

1037.0  
900.0  
891.0  
1032.0  
950.0 

1.98  
1.61  
1.68  
2.57  
17.52  

h1=1.5, 
h2=1 

25 

1270.0 
1210.0 
1132.0 
1213.0 
1175.5 

1287.0 
1218.0 
1137.0 
1218.0 
1195.5 

1282.0  
1230.0  
1132.0  
1251.0  
1186.0 

3.71  
2.93  
3.68  
20.10  
9.07  

30 

1553.0 
1459.0 
1323.0 
1463.0 
1405.0 

1558.5 
1470.0 
1332.0 
1463.0 
1406.5 

1580.0  
1489.0  
1377.0  
1491.0  
1480.0 

52.10  
44.08  
46.97  
34.74  
35.57  

h1=2, 
h2=1 

15 

834.0 
785.0 
764.0 
882.0 
804.0 

834.0 
787.0 
764.0 
882.0 
804.0 

834.0  
785.0  
764.0  
882.0  
804.0 

1.92  
1.68  
2.07  
1.25  
2.15  

20 

1142.0 
992.0 
991.0 
1166.0 
1084.0 

1142.0 
1008.0 
992.0 
1170.0 
1084.0 

1149.0  
992.0  
1064.0  
1166.0  
1092.0 

3.13  
1.41  
3.70  
3.77  
10.90 

h1=2, 
h2=1 

25 

1428.0 
1351.0 
1283.0 
1255.0 
1362.0 

1435.0 
1354.0 
1285.0 
1454.0 
1372.0 

1460.0  
1371.0  
1286.0  
1406.0  
1381.0  

8.08  
4.70  
6.49  
19.32  
13.97  

30 

1780.0 
1642.0 
1511.0 
1634.0 
1626.0 

1809.0 
1642.0 
1511.0 
1634.0 
1632.0 

1850.0  
1715.0  
1835.0  
1718.0  
1729.0 

46.98  
48.43  
49.66  
29.41  
41.60  
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