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a b s t r a c t

The research work on supply-chain management has primarily focused on the study of materials flow
and very little work has been done on the study of upstream flow of money. In this paper we study
the flow of money in a supply chain from the viewpoint of a supply chain partner who receives money
from the downstream partners and makes payments to the upstream partners. The objective is to sche-
dule all payments within the constraints of the receipt of the money. A penalty is to be paid if payments
are not made within the specified time. Any unused money in a given period can be invested to earn an
interest. The problem is computationally complex and non-intuitive because of its dynamic nature. The
incoming and outgoing monetary flows never stop and are sometimes unpredictable. For tractability pur-
poses we first develop an integer programming model to represent the static problem, where monetary
in-flows and out-flows are known before hand. We demonstrate that even the static problem is NP-Com-
plete. First we develop a heuristic to solve this static problem. Next, the insights derived from the static
problem analysis are used to develop two heuristics to solve the various level of dynamism of the prob-
lem. The performances of all these heuristics are measured and presented.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Supply-chain management revolves around coordination and
cooperation among several business partners that are linked
through flows of material, money and information. These partners
include suppliers of basic raw materials and component parts,
manufacturers, wholesalers, distributors, transporters, retailers,
banks and financial institutions. In general the materials, compo-
nent parts and finished goods flow downstream although the re-
turned merchandise flows upstream. The money flows upstream
in a supply chain whereas the information flows in both directions
(Fig. 1). For an effective supply chain system, the management of
upstream flow of money is as important as the management of
downstream flow of goods.

The problem of flow of goods in supply chains has been studied
widely (Kouvelis et al., 2006). Research on supply chain systems
has focused on inventory cost, transportation cost and cost related
to goods procurement. However, there has been very little research
work that focuses on the upstream flow of money.

There are several fundamental differences between the down-
stream flow of goods and materials and upstream flow of money.
In downstream flow, holding of goods and materials increases
the inventory holding cost whereas in upstream flow of money,
holding of money earns interest which is a completely opposite

situation to that of downstream flow of goods. Further, the amount
of goods and materials to be delivered downstream depends on the
orders placed from the downstream partner and remains constant
if the order size is not changed. However, in upstream flow of
money, the amount to be paid to an upstream partner will depend
on the terms of payment that may include penalty for late pay-
ments and/or discounts for early payments. Trade credit policies
are well researched in the finance literature, for example, see Borde
and McCarty (1998). These differences make the management of
upstream flow of money an important and distinct research
problem.

The motivation for studying the problem proposed in this paper
emerged through our discussions with Sukrit Agrawal (2008), CEO,
American Medical Depot, a distributor of medical and surgical sup-
plies in Miami, Florida, USA. According to Agrawal, his company at
any time has close to 500 invoices to be paid; and almost the same
number of accounts receivables. An optimization model to sche-
dule payments can definitely benefit the company.

This research problem of managing the flow of money is com-
putationally complex for several reasons. First, the inflows and out-
flows of cash are continuous throughout an organization‘s life
span. These flows never cease to exist and, therefore, the problem
is dynamic in nature. Second, future cash inflows and outflows are
mostly unknown, because such inflows and outflows depend on
movement of goods which again depends on market demand.
Third, even if the future values of such inflows and outflows are
known before hand the problem is computationally NP-Complete.
We demonstrated this by first developing a static version of the
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problem. So the problem requires focused study and development
of appropriate quality heuristic, which is the main objective of this
paper.

To illustrate the complexity of the problem, let us consider a
very simple case of a wholesaler, who receives $100 each day from
his distributors; and has to pay two invoices in the amounts of
$1000 and $2000 from two of his suppliers respectively. Let us as-
sume that the deadline for paying the $1000 to supplier A is within
the next 10 days; and the deadline for paying the supplier B is
within the next 15 days. Penalties are to be paid if the payments
are made after the deadlines. Suppose the penalties per day are
1.0% and 1.5%, respectively, for the two suppliers. Obviously, pay-
ments to the two suppliers cannot be made within the deadlines
and the wholesaler needs to decide the order in which the two sup-
pliers will be paid. If the wholesaler decides to pay supplier A first
and then supplier B, then the total cash outflow will be $3859 by
39th day. In this decision the payment to supplier A is made on
the 10th day without a penalty; and the payment to supplier B is
made on 39th day with penalty. If the wholesaler decides to pay
supplier B first and then supplier A, then the total cash outflow is
$3549 by 36th day. In this decision, the payment to supplier B is
made on 23rd day and the payment to supplier A is made on
36th day. This decision involves paying penalties to both suppliers
but entails a smaller cash outflow; and is the preferred choice. This
is a very non-intuitive solution even for such a small scenario.
Deriving the optimal scenario for this simple case requires solving
multiple non-linear equations. Real life situations are much more
complex; and involve multiple suppliers and multiple distributors.
The terms and conditions for making payments to various suppli-
ers vary from each other. The real problem is also not static be-
cause new invoices continue to arrive while the old invoices still
need to be paid. The cash inflow rate may not be continuous and
uniform each day. The wholesaler may use rudimentary heuristics
such as ‘‘first come first served’’, or ‘‘least penalty’’, which may only
result in suboptimal decisions. Finding optimal solution to such
problem is computationally complex.

In this paper first we develop an integer programming model
for the static case where the future receipts from distributors,
and the payment terms and amounts of all suppliers are known.
We prove that the problem is NP-Complete. Next, we present a
heuristic approach where the cash in-flows from distributors are
known but the amounts and payment terms from suppliers are un-
known. Lastly, we present a dynamic solution where both the fu-
ture cash in-flow from distributors and upcoming payment terms
(invoices) from the suppliers are unknown. In both the cases, we
determine the quality of the heuristic solutions by comparing it

with the optimal and lower bound solution of the problem. Lastly
we present our managerial implications on applicability of differ-
ent solution techniques in various real life situations.

2. Related work

The flow of money in a supply chain has not yet attracted the
attention of main stream POM and MS/OR researchers even though
the problem is important and bears a great resemblance to flow of
material. The money flow problem has primarily been studied as
the problem of cash circulation, cash management and cash bal-
ance. Based on the available literature, the research work under
the rubric of financial supply chains can be divided into the follow-
ing three categories.

� Cash flow systems analogous to ERP systems.
� Models for cash management based on inventory concepts.
� Cross functions models that integrate manufacturing and

finance decisions.

2.1. Cash flow systems analogous to ERP systems

There is a pleothra of literature on financial supply chains that
has primarily focused on the use of technology in improving the
cash flow process similar to that of ERP in a manufacturing envi-
ronment. The examples include Hausman (2005), Killen (2002)
and SAP (2005). The main focus of these studies is on the improve-
ment of actual business process interactions across multiple orga-
nizations in financial supply chain systems. For example, Hausman
(2005) has studied the process of monetary flow in complex finan-
cial relationships involving banks, financial institutes, vendors and
retailers. A quantitative measure of the efficiency of cash flow pro-
cesses can be found in research papers that are termed as ‘‘Cash-
to-Cash’’ (C2C) studies. The ‘‘Cash-to-Cash’’ is defined as ‘‘the
average days required to turn a dollar invested in a raw material
into a dollar collected from a customer,’’ Farris and Hutchison
(2002, 2003). Farris and Hutchison (2002) has shown the impor-
tance of C2C as a metric in the supply chain system. More recently,
Ozbayrak and Akgun (2006) focused on cash conversion cycle
which is the time elapsed between the time a purchase or invest-
ment is made and the time of sales revenue received from goods
produced by that purchase or investment. This approach of cash
management may not be applicable in value-added-service opera-
tions where it is very difficult to pin point the exact return for each
and every purchase and investment. In many cases such purchase

Fig. 1. Supply chain of goods and cash for a wholesaler.
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and investment are made for strategic advantages, with no imme-
diate clear-cut return. We believe that the flow of cash needs to be
managed as an overall problem rather than trying to map which
upstream flow results in which downstream flow and then make
decisions. Such mapping approach may result in a non-optimal
performance of the overall business in terms of cash situations of
the company. The studies that deal with cash flow process or the
C2C research do not develop a scheme for an optimal or near-opti-
mal management of cash flow in financial supply chain system, as
we have done in this paper. They do not optimize the payment
schedule. These studies could be considered complimentary to
the contribution of this paper because our paper specifies the opti-
mal payment schedule whereas these studies focus on efficient
processes.

2.2. Models for cash management based on inventory concepts

Another stream of research in cash management literature has
borrowed concepts from inventory theory. In general, an organiza-
tion maintains a portfolio of assets that include liquid cash, trea-
sury bills, commercial papers, etc. The optimal cash policies for
these organizations can be determined by minimizing costs of
holding cash and various transaction costs to convert from one as-
set type to another. The mathematical models for cash balance pri-
marily focus on balancing the cash in hand with the liquid asset
like marketable securities based on firms’ needs for cash and pre-
dictability of such needs. Ashford et al. (1988) and Steuer and Na
(2003) are good overviews of applying operational research tech-
niques for financial decision making including both the short term
and long term cash management in investments. One of the earli-
est papers on this topic, Sethi (1971) developed a mathematical
programming model for cash management with minimum transac-
tion cost as the objective function. Vangijlswijk (1987) addressed
the problem of liquidity position of a firm by carefully balancing
transactions across money market, deposits and loans. Mulvey
and Vladimirou (1992) presented a networking programming
model for asset allocation in portfolio selection and international
cash management. Zopounidis (1999) has applied operational re-
search techniques in long term final decisions such as allocation
of funds, financial structure and short term decisions such as
stocks, account receivables, current liabilities. In Premachandra
(2004), a cash management approach has been developed to bal-
ance the cash in hand and the assets such as treasury bills, com-
mercial papers, etc. Feinberg and Lewis (2007) proposed solution
conditions for optimizing average cost of inventory for the cash
balance problem. Gormley and Meade (2007) presented a policy
to minimize transaction cost based on cash flow forecast and
uncertainty associated with the forecast. Impulse control model
has been developed for cash management or money demand in
Bar-Ilan et al. (2004). Batlin and Hinko (1982) took a game theo-
retic approach between two distinct corporate activities – cash
flow acceleration and liquidity account allocation. Cash manage-
ment for randomly varying environment has been studied by Hin-
derer and Waldmann (2001). The decision problem about when to
acquire loans based on cash situations of a company has been stud-
ied in Lam et al. (1998). The cash balance problem between the
cash fund and short term securities for an infinite time horizon
has been addressed by Baccarin (2002).

The cash balance problems addressed in above papers are
orthogonal to the problem we are studying. The cash balance prob-
lems in these papers deal with internal cash management of an
organization so that transaction cost is minimized or higher return
can be found from these transactions. However, the problem we
are studying focuses on management of external cash transactions
such as cash received from downstream partners and cash pay-
ables to upstream partners.

2.3. Cross functions models that integrate manufacturing and finance
decisions

Some recent research papers (Badell et al., 2004, 2005; Guillen
et al., 2007) have emphasized that financial supply chain decisions
should be integrated with advanced planning and scheduling deci-
sions. These papers developed mixed integer linear programming
based formulations for cash management in a chemical process
industry. Cash management problem studied in these papers is
based on maximizing the cash position by combining profit and
the cost of making that profit. This approach may be applicable
for manufacturing industries. However, in service industries such
an approach may not be plausible. Our research bears some simi-
larity to the approach presented in these papers. However, we ad-
dress the problem of cash management to prioritize the payment
schedule based on incoming revenue stream and pending invoices
to be paid. The results of this study can be applied between any
two levels of upstream and downstream partners, in both manu-
facturing and service industry in a supply chain.

In a recent paper, Rajamani et al. (2006) discuss the Federal Re-
serve System of USA’s cash circulation policy and proposes a
framework to analyze the cash supply chain structure. Rajamani
et al. (2006) provide a framework for the physical transportation
of money, similar to that of flow of materials, in a supply chain.
Our model of upstream and downstream flow of cash follows that
framework but the flow of money does not have to be in physical
form. We focus on incoming and outgoing monetary transactions.

The closest research to the problem we are addressing is Gupta
et al. (1987), where authors have developed an integer program-
ming model for the loan payment policies. The problem studied
by Gupta et al. (1987) has borrowed concepts from the scheduling
literature and is a much simplified version of the problem we are
studying in this paper. Vanderknoop and Hooijmans (1989) has
also done a similar study by manipulating incoming receipts and
outgoing cash-flows. However, many of the realistic characteristics
such as deadline, interest, penalty are not considered in these mod-
els. Additionally the application of these models require solving
complex mathematical programming model. In this paper, we
developed a model that is much more concise and practically rele-
vant, and we propose a number of simple heuristics that can be ap-
plied in wide variety of situations.

3. Model development

We consider the problem from the viewpoint of a wholesaler
who receives finished products from several manufacturers (up-
stream partners) and then distributes these products to several
retailers (downstream partners). The wholesaler receives money
from the downstream partners and makes payments to the up-
stream partners. Let us assume, qt be the total money received
by the wholesaler from all downstream partners at time t.

For tractability purposes, here we are assuming that the future
cash in-flows from downstream partners and future invoices along
with their terms from upstream partners are known, later in the
paper (Sections 4.3 and 4.4) we will relax these constraints to de-
velop a more realistic solution.

We denote Lk to be the invoice amount for the kth invoice from
an upstream partner received at time sk. Note that, at any time a
number of invoices may be generated, i.e., there may exist multiple
invoices Lk with the same value of sk. An invoice is generated by a
supplier after shipping the products to the wholesaler. The objec-
tive of the wholesaler is to schedule the payments of these invoices
to the upstream partners within the constraints of the receipt of
the money from the retailers. If invoice k is paid before a certain
date, denoted as bk, the terms of payment of the invoice guarantees
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a discount uk. Existence of such discount can be found in previous
researches on cash management such as Borde and McCarty
(1998). This discount by upstream partners is given to encourage
early payment of the invoice by the wholesaler. However, a penalty
or interest vk has to be paid if the payment for invoice k is not made
within a due date dk. It may be noted that sk 6 bk 6 dk. Any money
that is accumulated with the wholesaler can be invested to earn an
interest. The wholesaler’s objective is to minimize cash out flow to
pay all invoices.

Following, we develop an integer programming model to mini-
mize the net present value of the cash out flow to make payments
to the upstream partners. Parameters of the model are given in
Table 1.

To formulate the problem in discrete time frame, we consider T
as the number of future days representing the planning horizon.
We want to decide the day of payment for invoice k "k 2 K during
the planning horizon T. So we have,

Decision variables:
Xkt = 1, if invoice k is paid on day t, 0 otherwise.
We denote Ak as the amount paid for the invoice k. Ak may take

one of the following three values: (i) Invoice k is paid with a dis-
count on or before bk, i.e., Ak = Lk(1 � uk). (ii) Invoice k is paid after
bk, but on or before due date dk, i.e., Ak = Lk. (iii) Invoice k is paid at
time t after due date dk with a certain penalty that depends on t.
We assume that if the invoice is not paid before the due date,
the penalty or the interest starts accruing daily from the due date.
So in this case we will have Ak ¼ Lkð1þ vkÞðt�dkÞ. Let us denote Ak(t)
as the amount paid for invoice k, if the invoice k is paid at time t. So
we will have,

AkðtÞ ¼
Lkð1� ukÞ if; sk 6 t 6 bk

Lk if; bk < t 6 dk

Lkð1þ vkÞðt�dkÞ if; dk < t:

0
B@

The present value, denoted as PVk of Ak(t) is PVk = Ak/(1 + r)t where
r is the interest rate. The wholesaler’s objective is to minimize
the total present value of the payments made against all invoices,
thus

Minimize
X
8k2K

PVk i:e:;

Minimize Z ¼P
8k2K

Pbk

t¼sk

Lkð1�ukÞ
ð1þrÞt Xkt þ

Pdk

t¼bkþ1

Lk
ð1þrÞt Xkt þ

PT
t¼dkþ1

Lkð1þvkÞðt�dk Þ

ð1þrÞt Xkt

" #
:

ð1Þ

Xkt ¼ 0 or 1; 8k 2 K; 8t 2 T: ð2Þ

Each invoice needs to be paid only once during the planning horizon
T. So we have,

XT

t¼sk

Xkt ¼ 1; 8k 2 K ð3Þ

Also, an invoice cannot be paid before it has been generated, thus,

Xkt ¼ 0 8k 2 K and t < sk: ð4Þ

We also need to specify cash balance equations to ensure that the to-
tal cash in hand is more than or equal to the total payments made
against one or more invoices in each time interval, i.e., on each day.
The cash in hand in each time interval is equal to the total cash inflow
received so far, plus the interest earned on the cash-in-hand minus
the total payment of invoices made so far. Additionally, we assume
that all cash transactions (payment of loans and cash in-flow) occur
at the end of the each time interval (e.g., at the end of the day).

We will have following constraints to balance the cash inflow
and outflow on each day.

For t ¼ 1; dþ q1 �
X
8k2K

Xk1Akð1ÞP 0:

For t ¼ 2; dþ q1 �
X
8k2K

Xk1Akð1Þ
" #

ð1þ rÞþ q2 �
X
8k2K

Xk2Akð2ÞP 0:

We can generalize the above constraints for all t = 1, . . .,T as follows.
For a given t,

dð1þ rÞt�1 þ
Xt

t0¼1

qt0 ð1þ rÞt�t0 �
X
8k2K

Xkt0Akðt0Þð1þ rÞt�t0

" #
P 0

8t ¼ 1; . . . ; T ð5Þ

Thus the scheduling of invoice payments to upstream partners can
be represented by an integer programming (IP) formulation P as de-
fined by objective (1) and constraints (2)–(4).

The IP problem presented in this section is NP-Complete as
shown below in Theorem 1.

Theorem 1. Problem P is NP-Complete.

Proof. The generalized assignment (GA) problem as given below is
known to be a NP-Complete problem (Ross and Soland, 1975).

Minimize
X
i2I

X
j2J

cijyij

Subject to
X
j2J

rijyij 6 ei; 8i 2 I ð6Þ
X
i2I

yij ¼ 1; 8j 2 J ð7Þ

yij ¼ 0 or 1 ð8Þ

subscripti > 0, "i 2 I, cij, "i 2 I and j 2 J, rij, "i 2 I and j 2 J are
constants.

The objective function Eq. (1) maps to the objective function of
the generalized assignment problem where index t in the problem
P maps to index i of GA problem and index k of the problem P maps
to index j of the GA problem.

The Eq. (3) of the problem P maps to the Eq. (7) of the GA
problem. The Eq. (5) of the problem P maps to the Eq. (6) of the GA
problem. Thus the problem P is an instance of the GA problem,
which is a NP-Complete problem. So the problem P is also NP-
Complete. h

3.1. Additional constraint

One of the tactics in solving NP-Complete IP problem is to
introduce additional constraints that will reduce the number of

Table 1
Parameters of the model.

Set
K = set of all invoices

Parameters
Lk = invoice amount for invoice k "k 2 K
uk = discount rate on the invoice k’s amount "k 2 K
bk = the time on or before which the invoice k needs to paid to get the

discount uk "k 2 K
dk = due date for the invoice k "k 2 K
vk = penalty or interest rate per period if the invoice k is not paid on or before

due date dk "k 2 K
sk = time at which invoice was generated by the upstream partner "k 2 K,

sk 6 bk 6 dk

r = interest rate that can be earned per day for accumulated cash by the
wholesaler (r < vk)

qt = total amount received from all downstream partners at time t
d = cash in hand at the beginning time 0
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variables in consideration and thus the problem size. Following
this, we identify several structural properties of our problem,
which we present here as lemmas and correspondingly introduce
additional constraints that eliminate some of the decision vari-
ables. The detailed discussion of these lemmas and formal proof
can be found in Gupta et al. (1987).

Lemma 1. It is not beneficial to pay an invoice at t, where t < bk.

Proof. If an invoice k is paid at time t < bk, we will have
Ak(t) = Lk(1 � uk).

If the same invoice k is paid at time t = bk, we will also have
Ak(t) = Lk(1 � uk).

If the invoice k is paid at t < bk, the wholesaler looses the
interest on Ak at the rate of r from t to bk.

So the Lemma 1 follows.
Thus we will have following constraints for the problem P.

Xkt ¼ 0; 8k 2 K and t < bk: � ð9Þ

Lemma 2. It is not beneficial to pay an invoice at t, where bk < t < dk

compare to paying at t = dk.

Proof. If an invoice k is paid at time t, where bk < t < dk, we will
have Ak(t) = Lk.

If an invoice k is paid at time t = dk, we will also have
Ak(t) = Lk.

If the invoice k is paid at t, where bk < t < dk, the wholesaler
loose the interest on Ak at the rate of r from t to dk.

So, the Lemma 2 follows.
Thus we will have following constraints for the problem P.

Xkt ¼ 0; 8k 2 K and bk < t < dk: � ð10Þ

Lemma 3. If the total accumulated cash at t = bk is not sufficient to
pay the invoice k, then Xkt = 0 for t = bk.

The above Lemma says that if the cash in hand is not sufficient
to pay an invoice, the invoice cannot be paid. This is quite obvious
and does not require any proof.

However, the lemma helps us to derive a set of additional valid
constraints.

The total accumulated cash at the end of any interval t is given
by the LHS of Eq. (5),

dð1þ rÞt�1 þ
Xt

t0¼1

qt0 ð1þ rÞt�t0 �
X
8k2K

Xkt0Akðt0Þð1þ rÞt�t0

" #
:

If so far no payment is made against any invoice during the time
horizon, then we will have Akðt0Þ ¼ 0 8t0 ¼ 1; . . . ; t:

In this case the total accumulated cash is, dð1þ rÞt�1þPt
t0¼1qtð1þ rÞðt�t0 Þ.
Clearly, this value of the accumulated cash is the upper bound

of the accumulated cash at the end of any interval t. So, if an in-
voice needs to be paid at the interval t, we should have,

dð1þ rÞt�1 þ
Xt

t0¼1

qtð1þ rÞðt�t0 Þ
> AkðtÞ:

The minimum value of Ak(t) is Lk(1 � uk).
Thus, the invoice k cannot be paid at the interval t if

dð1þ rÞt�1 þ
Xt

t0¼1

qtð1þ rÞðt�t0 Þ
< Lkð1� ukÞ:

So, we derive a set of valid constraints,

Xkt ¼ 0 if dð1þ rÞt�1 þ
Xt

t0¼1

qtð1þ rÞðt�t0Þ
< Lkð1� ukÞ;

8k 2 K; 8t 2 T: ð11Þ

Lemma 4. If the total accumulated cash at dk is not sufficient to pay
the invoice k, then Xkt = 0 for t = dk.

The above lemma is obvious and does not require any proof.
However, following the approach in Lemmas 3 and 4 also helps
us to derive a set of additional valid constraints as follows:

Xkt ¼ 0 if
Xt

t0¼1

qtð1þ rÞðt�t0Þ
< Lk; 8k 2 K 8t 2 T : t <¼ dk:

ð12Þ

4. Solution approaches

In this section, we present two heuristic solution techniques
and the efficacy of their solution results. Ideally the heuristic solu-
tion needs to be compared with the IP optimal solution. In this re-
search we use CPLEX 10.0 (ILOG, 2008) for solving the IP optimal.
However, the optimal solution of the IP problem P even with the
addition of constraints (9)–(12) is impossible to obtain for large
size problems. The problem size of the problem P is determined
by the number of invoice in considerations (jKj) and number of
days (T). We have been able to get optimal solution of the IP prob-
lem P (along with additional constraints) for up to 30 invoices and
730 days (i.e., 2 years) in a computer with 2GB RAM and Dual core
2.33 GHz Intel processors using CPLEX 10.0. For problem sizes lar-
ger than this we need to devise a way to find the lower bound of
the problem P, that can be used for judging the quality of solutions
obtained by heuristic approach.

4.1. Lower bound determination

Lagrangian Relaxation technique (Fisher, 1981) is a way to relax
one of the constraints of an IP problem and introduce a penalty in
the objective function for violating the constraint. This modified
Lagrangian relaxed problem may be easier to solve than the origi-
nal IP problem and sometimes helps to get the lower bound of an
otherwise difficult IP problem.

For problem P, we relax the constraints denoted by (4) to have
the following Lagrangian objective function for some
kt P 0 "t = 1, . . .,T.

Zðk1; . . . ;kTÞ ¼Minimize

X
8k2K

Xbk

t¼sk

Lkð1�ukÞ
ð1þ rÞt

Xkt þ
Xdk

t¼bkþ1

Lk

ð1þ rÞt
Xkt þ

XT

t¼dkþ1

Lkð1þvkÞðt�dkÞ

ð1þ rÞt
Xkt

2
4

3
5

þ
XT

t¼1

kt dð1þ rÞt�1þ
Xt

t0¼1

qtð1þ rÞt�t0 �
X
8k2K

Xkt0Akðt0Þð1þ rÞt�t0

" #" #
:

ð13Þ

We denote the Lagrangian relaxed problem PL with objective func-
tion (13) and constraints defined as Eqs. (2)–(4) and (9)–(12). The
problem PL is separable into jKj problems, each of which is indepen-
dent of k 2 K. So, each of these problems is easier to solve than the
original problem P. There exists non-negative values of kt P 0
"t = 1, . . .,T, such that Z⁄ 6 Z(k1, . . . ,kT) 6 Z, where Z⁄ denotes the
linear relaxation value of Z (defined by (1)). We apply sub-gradient
technique (Fisher, 1985) to find these values of k using CPLEX 10.0
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(ILOG, 2008) and Java programming, for which Z(k1, . . .,kT) will be
the lower bound of the original problem P.

We use this lower bound value to find the quality of heuristic
solutions for large size problems.

4.1.1. Quality of lower bound solution
To demonstrate the quality of lower bound solution we gener-

ated several problems for various sizes. The values of different
parameters were chosen randomly within a range as denoted in
Table 2. Four of these parameters (r,qt,d,T) are constant in the
model, so there is no maximum value corresponding to these
parameters. These range values were chosen based on our discus-
sion with few small businesses in South Florida region in the area
of logistic management.

For experimentation, the problem size was varied by changing
the number of invoices to 10, 15, 20, 25 and 30. For each invoice
number we generated 5 problems by having different random
seed. So we had a total of 25 problems. For each of these problems
we found the lower bound solution in CPLEX 10.0 in the machine
configuration mentioned before. We also obtained the optimal
solution using CPLEX 10.0. As mentioned before, we have been able
to get the optimal solution up to problem size of 30 invoices. We
compute the maximum, minimum and average gap of the lower
bound from the optimal solution across five problems for each
problem size. The percentage gap for the lower bound solution
with respect to optimal solution is computed as,

ðOptimal solution� lower bound solutionÞ
� 100=optimal solution

and reported in Table 3. The results demonstrate that the lower
bound obtained by Lagrangian Relaxation technique is very near
to the optimal within on 0.1%. For larger problem sizes, we cannot
find the optimal solution, so there is no way to judge the quality
of Lagrangian Relaxation solution for large size problems. However,
near optimal result for Lagrangian Relaxation gives us certain de-
gree of confidence in measuring the solution quality of our heuristic
techniques (to be discussed in next few subsections) by comparing
the solution with lower bound found by Lagrangian Relaxation.

4.2. Interval heuristic

One dimension of the complexity of the problem P is the num-
ber of time intervals T, i.e., number of days in consideration. In
Interval Heuristic, we merge several time intervals into a single
time interval, e.g. a number of days together may compose a week
or months and reformulate the problem as a new problem PH with
reduced number of intervals. This will reduce the problem
complexity significantly and will enable us to solve PH optimally.
The optimal solution of PH will be a heuristic solution for the
problem P.

Thus given a problem P, we create a new problem PH, that is ob-
tained by merging n number of time intervals of problem P into
one interval. Thus, if n = 7, in problemPH, one time interval is a
week.

The number of time periods in PH will be TH = dT/ne. The ceiling
takes care of the scenario where T is not exactly divisible by n. In
this case, the length of the last interval (i.e., Tth interval), will be
the remainder of T/n.

The interest rate for each interval in PH will be computed as
compound interest rates for n intervals in problem P. The interest
for the last interval in problem PH also needs to be adjusted based
on the length of the last interval, which is q = T%n, where % denotes
the remainder of T/n. Thus in problem PH, interest rate on accumu-
lated cash at wholesaler

rH
t ¼

ð1þ rÞn � 1 8t ¼ 1; . . . ; ðTH � 1Þ;
ð1þ rÞq � 1; t ¼ TH; where q ¼ T%n

(
:

The amount received from downstream partner in an interval in
problem PH is also adjusted accordingly as follows.

qH
t ¼

Ptnþn�1

t̂¼tn

qt̂ 8t ¼ 1 . . . ðTH � 1Þ

Ptnþq�1

t̂¼tn

qt̂ ; t ¼ TH; where q ¼ T%n

0
BBBB@ :

Similarly, other parameters of problem PH are computed as, LH
k ¼

Lk 8k 2 K; uH
k ¼ uk 8k 2 K; sH

k ¼ sk=nb c 8k 2 K; bH
k ¼ bk=nb c 8k 2 K;

dH
k ¼ dk=nb c 8k 2 K , where b c denotes the floor function

of a number. Following the same logic as in case of r, we
compute the penalty rate per interval for problem PH

by compounding over multiple intervals as, vH
kt ¼

ð1þ vkÞn � 1 8t ¼ 1; . . . ; ðTH � 1Þ
ð1þ vkÞq � 1 for t ¼ TH; where q ¼ T%n

�
:

The problem PH is formulated as an instance of problem P, by Eq.
1, where vk will be replaced by vH

kt ; q will be replaced by qH
t and r

will be replaced by rH
t . All other parameters will have a suffix H

as defined above.
The solution of problem PH will give us a heuristic solution for

the problem P. For n = 1, problem PH reduces to the original prob-
lem P. As n is increased the accuracy of the heuristic solution will
reduce, however with small n it will be difficult to solve PH opti-
mally. So, there need to be a tradeoff between the accuracy and
the problem complexity. In the next section we compare the vari-
ation of accuracy and the complexity of the problem PH as n is
varied.

4.2.1. Quality of interval heuristic
In this section we first compare the solution obtained by inter-

val heuristic with that of the optimal solution. For problems of
sizes 10, 20, 30, 40 and 50 number of invoices, we created 5 prob-
lems each with parameter ranges as described in Table 2. For each
of these problems we found the solution by interval heuristic with
interval length N = 7 (i.e., one week). For problem size of up to 30

Table 2
Range values for model parameters.

Parameter Minimum value Maximum value

Lk $500.00 $10000.00
bk 10 Days 30 Days
uk 1% 5%
dk 10 Days 90 Days
vk 0.02% Daily interest i.e., 7.0%

APY
0.1% Daily interest i.e., 44%
APY

sk 0 180 Days (6 months)
r 0.01% Daily interest i.e., 3.7%

APY
Constant

qt $500.00 Constant
d 0 Constant
T 730 Days i.e., 2 Years Constant

Table 3
Lower bound gap compared to IP optimal solution.

Number of invoices % Min gap % Max gap % Average gap

10 0.02 0.09 0.05
15 0.01 0.08 0.04
20 0.02 0.08 0.05
25 0.03 0.12 0.06
30 0.01 0.11 0.05

52 S. Gupta, K. Dutta / European Journal of Operational Research 211 (2011) 47–56



Author's personal copy

invoices, we found both the optimal solution and the lower bound
solution as described in Section 4.1. However, for problem sizes of
40 and 50 invoices, we could not compute the optimal solution, but
computed the lower bound solution as described in Section 4.1. We
computed the quality of the heuristic solution by calculating the %
Gap of the heuristic solution from the optimal solution and the
lower bound (LB) solution as follows.

% Gapwithoptimalsolution
¼ ðheuristicsolution� optimalsolutionÞ � 100=optimalsolution;

ð14Þ

% GapwithLBsolution ¼ ðheuristicsolution� LBsolutionÞ
� 100=LBsolution: ð15Þ

We report this gap in Table 4. The results demonstrate that interval
heuristic, with 7 days (i.e., one week) defined as one interval, gives
result within 0.3% of the optimal solution.

Intuitively, with the increase in number of intervals (n) the gap
between the interval heuristic and the optimal solution will in-
crease, whereas it will be easier to solve interval heuristic with
higher n. To demonstrate the tradeoff between the accuracy and
the solution complexity, we next study how the accuracy and solu-
tion complexity change with the number of intervals (n). The qual-
ity of the Interval Heuristic solution will be measured by % Gap as
defined in (14). The complexity or hardness to solve the interval
heuristic problem optimally will be measured by the time (in
seconds) CPLEX 10.0 takes to solve the problem. We select problem
size of 30 invoices, the maximum size we can solve optimally, for
this purpose. For this problem size we generate 5 problem in-
stances by different random seeds. The values of all other parame-
ters are chosen as defined in Table 2. For each of these problems,
we compute the optimal solution using CPLEX 10.0 in the machine
configuration described in Section 4. For each problem, we also
create interval heuristic problems for interval size n = 3, 5, 7, 14,
21, 28 and 30. So, we had a total of 35 interval heuristic problems,
5 problems for each interval size. We solve these interval heuristic
problems optimally using CPLEX 10.0. We note down the time
CPLEX takes to solve each of these problems. For each interval size,
we first compute the average % Gap from optimal solution and the
average time CPLEX takes to generate solution for the interval heu-
ristic problem. To plot in the same graph and compare, we normal-
ize the % Gap and solution time within [0,1] range. We report this
normalized value of Gap (indication of quality) and the solution
time (indication of complexity of the interval heuristic problem)
on Y-axis along with the number of intervals (n) on X-axis in Fig. 2.

With an increase in the value of n, the complexity of the prob-
lem PH reduces and so does the solution time. From Fig. 2, we can
see that as n increases from 2 to 7, the time to solve the problem
decreases, implying that the complexity of the problem reduces.
However beyond n = 7 there is no appreciable decrease in the solu-
tion time. On the other hand, with the increase of n, the approxi-
mation of considering a set of original time periods as an interval

reduces the accuracy of the solution. Following this, Fig. 2 demon-
strates that the % Gap increases almost linearly with n, throughout
all the values of n.

An interval of 7 days or one week in the interval heuristic will
help in solving larger problems with fewer resources with a mar-
ginal loss (0.16%) in the quality of the solution. However, there is
not much gain in increasing n beyond one week.

Thus as demonstrated, the interval heuristic will perform poorly
if each interval is composed of more than 7 days. Additionally, the
interval heuristic requires solving the reduced size problem opti-
mally. However, for a very large size problem, where the number
of invoices is in the range of hundreds, even the interval heuristic
problem becomes impossible to solve optimally. In such instances
we need to resort to heuristics as discussed in next two sections.

4.3. Dynamic invoice in-flow problem

In the above sections we considered a static problem in which
the number of invoices to be paid, the amounts of these invoices,
and the amount of money received from the downstream partners
are known when the payment schedule is being prepared. The im-
plicit assumption is that no other invoices will be received (or con-
sidered for payment) and there will be no cash inflow from
downstream partners until the given set of the invoices has been
paid. However, the real life situations are dynamic where invoices
constantly flow in from upstream partners to the wholesaler and
cash is being received from the downstream partners. In such sit-
uations we need to decide which of the pending invoices have to
be paid on a given day. The set of pending invoices is dynamic in
nature because of the receipt of new invoices. In this section we
develop a heuristic that can accommodate the scenario where in-
voice flow is dynamic, but the future cash in-flow (qt) is known be-
fore hand.

To develop this heuristic, we use adjacent pair-wise interchange
to determine the sequence in which two invoices j and k out of the
set of unpaid invoices will be paid on a given day (see Fig. 3). We
start by considering the set of K invoices in the static environment
and develop the dominance rules. Partition the set K such that
K = {B j k A} where B is the subset of invoices that have already been
sequenced to be paid and A is subset of invoices that will be paid
after invoice j and k have been paid. We derive dominance condi-
tions under which invoice j will be paid before k.

Let the time at which the last invoice in B was paid is h � 1.
The current time is, therefore, t = h, where the wholesaler has
two invoices to pay, j and k, such that j,k 2 K � B. The wholesaler
has two choices: (I) pay j first and then k, and (II) pay k first and
then j. Let us also assume that b, the accumulated cash at t = h,
and the additional cash accumulation after t = h will be used to
pay either invoice j or k. Let tj and tk be the times at which

Table 4
% Gap for interval heuristic solution.

Problem size
(number of invoices)

% Gap with optimal
solution

% Gap with lower bound
solution

Min Max Average Min Max Average

10 0.07 0.14 0.13 0.13 0.21 0.12
20 0.20 0.17 0.15 0.16 0.22 0.22
30 0.11 0.22 0.19 0.18 0.27 0.22
40 – – – 0.12 0.23 0.19
50 – – – 0.19 0.30 0.21

Fig. 2. Tradeoff between complexity (solution time) and accuracy (Gap) with
number of intervals in interval heuristic.
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invoices j and k are paid respectively in case I. Similarly, let t0j and
t0k be the times at which invoices j and k are paid respectively in
case II. For this analysis to have the tractability we assume qt = q

"t. In case I, we will have, Aj ¼ bð1þ rÞðtj�hÞ þ q ð1þ rÞðtj�hÞ � 1
� �

=r

and Ak ¼ q ð1þ rÞðtk�tjÞ � 1
� �

=r. Thus the present value of total

payments made is,

PVjk ¼
Aj

ð1þ rÞtj
þ Ak

ð1þ rÞtk
¼

bð1þ rÞðtj�hÞ þ q ð1þ rÞðtj�hÞ � 1
� �

rð1þ rÞtj

þ
q ð1þ rÞðtk�tjÞ � 1
� �

rð1þ rÞtk
: ð16Þ

Similarly, for case II, the present value of total payment made is,

PVkj ¼
A0j

ð1þ rÞt
0
j
þ A0k
ð1þ rÞt

0
k
¼

bð1þ rÞðt
0
j
�hÞ þ q ð1þ rÞðt

0
j
�t0

k
Þ � 1

� �
rð1þ rÞt

0
j

þ
q ð1þ rÞðt

0
k
�hÞ � 1

� �
rð1þ rÞt

0
k

: ð17Þ

If we assume, it is beneficial to pay j first and then k, we will have
PVjk < PVkj, thus,

bð1þ rÞðtj�hÞ þ q ð1þ rÞðtj�hÞ � 1
� �

rð1þ rÞtj
þ

q ð1þ rÞðtk�tjÞ � 1
� �

rð1þ rÞtk

<
bð1þ rÞðt

0
j
�hÞ þ q ð1þ rÞðt

0
j
�t0

k
Þ � 1

� �
rð1þ rÞt

0
j

þ
q ð1þ rÞðt

0
k
�hÞ � 1

� �
rð1þ rÞt

0
k

ð18Þ

From this we can derive that, wholesaler will pay invoice j first and
then k if and only if tk < t0j. Thus, we will have following Lemma.

Lemma 5. Present value of total payment against invoices will be
minimal if the total duration to pay a set of invoices can be minimized.

We compute tj, by solving equations,

q ð1þ rÞðtj�startjÞ � 1
� �

=r ¼ Ljð1� ujÞ; if tj 6 bj;

q ð1þ rÞðtj�startjÞ � 1
� �

=r ¼ Lj; if bj < tj 6 dj;

q ð1þ rÞðtj�startjÞ � 1
� �

=r ¼ Ljð1þ v jÞðtj�djÞ; if dj < tj;

where startj ¼
h if sj 6 h
sj otherwise .

We use the value of tj to compute tk, by solving equations,

q ð1þ rÞðtk�startkÞ � 1
� �

=r ¼ Lkð1� ukÞ; if tk 6 bk;

q ð1þ rÞðtk�startkÞ � 1
� �

=r ¼ Lk; if bk < tk 6 dk;

q ð1þ rÞðtk�startkÞ � 1
� �

=r ¼ Lkð1þ vkÞðtk�dkÞ; if dk < tk;

where startk ¼
h if sk 6 h
sk otherwise .

Similarly, we can compute the values of t0k and then t0j. We use
the above equations and the insight derived from Lemma 5 to de-
velop the heuristic algorithm in Table 5.

For each pair of invoices the algorithm compares based on Lem-
ma 5 to decide which invoice is better to pay first. Based on all such
comparisons, the algorithm identifies the invoice to pay next. The
algorithm outputs this invoice as j. The algorithm tries to minimize
the total payment duration.

The algorithm starts with the ordering of invoices in list M by
the earliest time at which each of the invoices can be paid, if cash
accumulation for that invoice starts immediately. In line 6, the
algorithm picks up the median invoice (j) in the list M. It then com-
pares all other invoices with the invoice j (Line 8–12), to find out
which of the invoices is better to pay before j, and creates a list S
of such invoices. Next, in Lines 17 and 18, assigning S to M, the
algorithm continues until and unless the algorithm has identified
invoice j, such that there is no other invoice that is beneficial to
pay before j. This approach of finding invoice j, is very similar to
binary sort approach that enables us to identify j in O(logjMj) time.

If the invoice j cannot be paid by the accumulated cash at the
present time t1, the cash accumulation for j starts at t1 and j will
be paid in future at time t2. In between t1 and t2, if a new invoice
l comes at a time t3 (t1 < t3 < t2), the invoice j and l are compared
to find out which invoice is better to pay first. Because of transitiv-
ity of the Eq. (18), we do not need to compare the newly arrived
invoice l, with all other invoices.

At the time, when one of the invoice is paid, i.e., if j is paid first
then at t2, the algorithm is run again to decide the next invoice to
pay.

The algorithm would work well in scenarios where all cash-in
flows are known before hand. Note that though for the sake of trac-
tability, in the above algorithm we have assumed that the qt is
same for all future time periods, this is not a requirement. As long
as, qt is known for all future time periods, the equation correspond-
ing to Lemma 5 can be solved and thus the algorithm in Table 5 can
be run. The algorithm will also perform well for limited number of
future time periods. If all invoices are known before hand for dis-
tant future, this algorithm will not perform well.

Complexity of dynamic invoice in-flow heuristic algorithm: The dy-
namic Invoice In-Flow heuristic algorithm will repeat from once for
each invoice, i.e., jKj times. In each execution, the algorithm will
find the invoice j in O(logjMj) time. Thus the overall complexity
of the dynamic invoice in-flow heuristic algorithm is O(jKjLogjMj),
i.e., log-linear, which is very time efficient. This allows the algo-
rithm to be adapted for dynamic situations as described below.

Table 5
Heuristic for dynamic invoice in-flow.

1. Input: A set of invoice K with parameters as defined in Table 1.
2. Output: Invoice j that will be paid at the end of time interval t.
3. Ordered List M = {k: k 2 K and k has not been paid}, order by the earliest

time by which invoice k can be paid.
4. If M = U
5. End.
6. Let j ¼ jMj

2

l mth
invoice in the list M

7. Set S = U
8. For "k 2 L:k – j
9. Compute tj; tk; t0j and t0k

10. If tk > t0j /⁄ Invoice k to be paid before j ⁄/
11. S = S [ {k}
12. End If
13. End For
14. If S = U
15. Return j
16. Else
17. M = S, order by the earliest time by which invoice k 2 S can be paid
18. Go to line 6
19. End If

Fig. 3. Comparing two loans j and k.
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4.4. Dynamic invoice and dynamic cash in-flow problem

In previous section, we developed the heuristic that can be ap-
plied in scenarios where invoice flow is dynamic, but the future
cash in-flow (qt) is known before hand. To address situations,
where both the future cash in-flow and the invoice flow is dynamic
and unknown, we develop an alternate heuristic as shown in
Table 6.

The heuristic in Table 6 is run at the end of each time interval t,
to determine a set of invoices that can be paid at the end of interval
t. The algorithm is based on the assumption that invoices that have
crossed the deadline need to be paid first, then the invoices that
have crossed the discount date (bk) but not the deadline (dk). Also,
among the invoices whose deadline have crossed, the algorithm
will arrange for payment of the invoices in the descending order
of the penalty (vk).

The above algorithm is based on the assumption that it is al-
ways better to pay the invoices that have crossed the deadline.

However, if the penalty for crossing the deadline of an invoice is
very small (i.e., vj is small), it may be beneficial to hold the pay-
ment of that invoice to pay for other invoices before the deadline,
where penalty is high. In such cases, the heuristic decision of the
algorithm will not perform well. Thus, if the variance in penalty
of invoices is high, the result of the algorithm will not be as good
as in other scenarios.

4.5. Quality of dynamic heuristics

We compare the present value of the total payment obtained by
the two dynamic heuristic approaches with that of the optimal
solution and the lower bound obtained by Lagrangian Relaxation
solution. We considered 10 problem sizes with 10, 20, 30, 40, 50,
60, 70, 80, 90 and 100 invoices for 5 years (i.e., 1825 days). For each
problem sizes we generated 5 problem instances with all other
parameters randomly selected within the range defined in Table 1.
We report the quality of both the dynamic heuristic solution with
that of the optimal and lower bound solution as obtained by Eqs.
(14) and (15) in Table 7. Due to larger number of days (1825 days),
optimal solution can only be found for problems with only 10 and
20 invoices.

Table 7 shows that dynamic invoice in-flow heuristic approach
can give solutions within 1.8% of the lower bound solution,
whereas dynamic invoice and dynamic invoice and dynamic cash
in-flow heuristic can give solutions within 3% of the lower bound
solution.

To demonstrate the time efficiency of both dynamic heuristics,
we compare the time taken by both dynamic heuristics with the
interval heuristic as the problem size is varied by varying the num-
ber of invoices and the number of years. We consider 5 problem
sizes as shown in Table 8. For each problem sizes, we generated
5 problem instances by varying the random seed. All parameters
are chosen randomly within the ranges as defined in Table 1. We
run the interval heuristic with 7 days interval and note the time

Table 6
Heuristic for dynamic invoice and dynamic cash in-flow.

1. Input : A set of invoice K with parameters as defined in Table 1.t, the
present time interval.

2. Output: £, the set of invoices that will be paid at the end of the present
time interval t.

3. Let F1 = Set of invoices for which t = bj, j 2 F1

4. Let F2 = Set of invoices for which t = dj, j 2 F2

5. Let F3 = Set of invoices for which t > dj, j 2 F3

6. Initially Set F1 = U, F2 = U, F3 = U and £ = U
7. Let Y # K, be the set of all unpaid invoices at the beginning of t.
8. Let At= Accumulated cash at the end of t.
9. For each j 2 Y,

10. If t < bj, j R F1,j R F2,j R F3

11. Else if bj < t < dj, j R F1,j R F2,j R F3

12. Else if t = bj and Lj(1 � uj) 6 At, F1 = F1 [ {j}
13. Else if t = dj and Lj 6 At, F2 = F2 [ {j}
14. Else if Ljð1þ v jÞt�dj

6 At ; F3 ¼ F3 [ fjg
15. End For
16. If F3 – U AND At > 0
17. Order F3 in the descending order of vj, j 2 F3

18. Select first l invoices in ordered F3, such that
P

Ljð1þ v jÞt�dj
6 At

19. At ¼ At �
P

Ljð1þ v jÞt�dj and include these l invoices in £
20. End if
21. If F2 – U AND At > 0
22. Order F2 in the descending order of vj, j 2 F2

23. Select first l invoices in ordered F2, such that
P

Lj 6 At

24. At ¼ At �
P

Lj and include these l invoices in £
25. End if.
26. If F2 – U AND At > 0
27. Order F1 in the descending order of uj,j 2 F1

28. Select first l invoices in ordered F1, such that
P

Ljð1� ujÞ 6 At

29. At ¼ At �
P

Ljð1� ujÞ and include these l invoices in £
30. End if.

Table 7
% Gap for dynamic heuristic solution.

Problem size
(number of invoices)

Dynamic invoice in-flow heuristic Dynamic invoice and dynamic cash in-flow heuristic

% Gap with optimal solution % Gap with lower bound solution % Gap with optimal solution % Gap with lower bound solution

Min Max Avg Min Max Avg Min Max Avg Min Max Avg

10 0.78 1.22 0.79 0.72 1.22 0.90 1.19 1.45 1.20 1.33 1.67 1.39
20 0.79 1.29 0.91 0.81 1.32 0.95 1.29 1.59 1.36 1.31 1.69 1.42
30 – – – 0.85 1.32 1.19 – – – 1.39 1.48 1.61
40 – – – 1.08 1.31 1.22 – – – 1.59 2.24 1.95
50 – – – 1.23 1.63 1.45 – – – 1.89 2.46 2.11
60 – – – 1.21 1.78 1.40 – – – 1.90 2.29 2.21
70 – – – 1.29 1.67 1.45 – – – 2.01 2.56 2.26
80 – – – 1.20 1.61 1.51 – – – 2.13 2.78 2.30
90 – – – 1.49 1.73 1.59 – – – 2.23 2.89 2.43
100 – – – 1.42 1.67 1.78 – – – 2.39 2.98 2.61

Table 8
Time efficiency of dynamic heuristic.

Problem size Average solution time (ms)

Number
of
invoices

Number
of years

Interval
heuristic with
seven days
interval

Dynamic
invoice in-
flow
heuristic

Dynamic invoice
and dynamic cash
in-flow heuristic

20 1 56,781 20 8
40 2 130,190 25 9
60 3 320,891 26 11
80 4 601,801 31 14
100 5 141,879 33 15
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taken to find the solution. We also run both the dynamic heuristics
and note the time. We report the average time taken by interval
heuristic and both dynamic heuristics for each problem size. As
demonstrated in Table 8, both dynamic heuristics are more time
efficient than the interval heuristic.

5. Discussion and conclusion

We have computationally demonstrated the accuracy and
applicability of various heuristics for the cash management prob-
lem discussed in this paper. For a 30 invoice problem the interval
heuristic for the static problem gave results that were 0.19% higher
than the optimal and 0.22% higher than the lower bound. For a 50
invoice problem the percentage gap from the lower bound solution
was 0.21%.

The study was then extended to the dynamic problems in which
the invoices and payments continue to arrive and are not fixed at
the beginning of the planning period. At any given point in time
the decision maker has to decide which invoice should be paid at
that time. The choice is influenced by the pending invoices and
the available cash. We have considered two different scenarios of
the dynamic problem. The first one deals with the situation in
which the arrival of invoices is dynamic, but the future in-flow of
cash is known. In the second case both the arrival of invoices and
receipt of cash are dynamic. Two different heuristics are proposed
for these two cases. The heuristic results were compared with the
lower bound. The percentage gap from the lower bound was 1.78%
for the dynamic invoice in-flow problem and 2.61% for the problem
in which both the arrival of invoices and receipt of cash are dy-
namic. The dynamic heuristics are much more efficient computa-
tionally as compared to the interval heuristic. Therefore, for very
large problems of several years and hundreds of invoices the dy-
namic heuristic may be preferred over the interval heuristic.

The problem studied in this paper has implications for both
managers and researchers. The heuristics proposed in this paper
can be used to solve real life dynamic problems. The research work
in this paper is rather new and opens up new research area in the
study of financial supply chains. The research may be expanded to
multiple echelons involving several currencies.
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