

European Journal of Operational Research 193 (2009) 637-638

EUROPEAN JOURNAL OPERATIONAL RESEARCH

www.elsevier.com/locate/eior

Short Communication

A faster fully polynomial approximation scheme for the single-machine total tardiness problem

Christos Koulamas*

Department of Decision Sciences and Information Systems, Florida International University, Miami, FL 33199, United States

Received 14 November 2006; accepted 27 December 2007 Available online 9 January 2008

Abstract

Lawler [E.L. Lawler, A fully polynomial approximation scheme for the total tardiness problem, Operations Research Letters 1 (1982) 207–208] proposed a fully polynomial approximation scheme for the single-machine total tardiness problem which runs in $O(\frac{n^2}{n})$ time (where n is the number of jobs and ε is the desired level of approximation). A faster fully polynomial approximation scheme running in $O(n^5 \log n + \frac{n^2}{2})$ time is presented in this note by applying an alternative rounding scheme in conjunction with implementing Kovalyov's [M.Y. Kovalyov, Improving the complexities of approximation algorithms for optimization problems, Operations Research Letters 17 (1995) 85–87] bound improvement procedure. © 2008 Elsevier B.V. All rights reserved.

Keywords: Single-machine sequencing; Total tardiness; Fully polynomial approximation

1. Introduction

The single-machine total (average) tardiness problem $1/\overline{T}$ is defined as follows: There are n jobs available at time zero; job j has a processing time p_i and a due date d_i . The tardiness of job j is defined as $T_i = \max(0, C_i - d_i)$ where C_i is the completion time of job j in a given sequence. The objective is to determine a job sequence such that the total tardiness $\sum_{i=1}^{n} T_i$ is minimized. The $1//\overline{T}$ problem is ordinary NP-hard [3]. Lawler [5] developed a decomposition-based optimal pseudo-polynomial algorithm for the $1/\overline{T}$ problem (to be called the OPP algorithm from now on) which runs in $O(n^4P)$ time (where $P = \sum_{j=1}^{n} p_j$). Other decomposition-based optimal algorithms for the $1/\overline{T}$ problem were developed by Potts and Van Wassenhove [7] (under the assumption that the longest job is completed as late as possible in an optimal sequence when it cannot be completed on time) and by Chang et al. [1] (under the assumption that the longest job is completed as early as possible in an optimal sequence). All of these decomposition-based optimal algorithms have the same worst-case running time as the OPP algorithm. Szwarc [8] presents a unified framework for the decomposition theorem of the

The complexity of the $1/\overline{T}$ problem justified the development of heuristics. According to Della Croce et al. [2], the worst-case bound for most of these heuristics is arbitrarily bad since it is a function of n. This is true even for decomposition heuristics which are heuristic implementations of the decomposition property of the $1/\overline{T}$

A fully polynomial approximation scheme for the $1/\overline{T}$ problem was developed by Lawler [6] by modifying his OPP algorithm. It supplies a sequence with total tardiness $T \text{ in } O\left(\frac{n^7}{\varepsilon}\right)$ time such that $T-T^* \leqslant \varepsilon T^*$ where T^* is the optimal solution and ε is the desired level of approximation. This is accomplished by applying the OPP algorithm to a $1/\overline{T}$ problem with rounded rescaled processing times and non-rounded rescaled due dates. A faster fully polynomial approximation scheme running in $O(n^5 \log n + \frac{n^5}{s})$ time can be developed by applying the OPP algorithm to a $1/\overline{T}$

Tel.: +1 305 348 3309; fax: +1 305 348 4126. E-mail address: koulamas@fiu.edu

problem with non-rounded rescaled processing times and rounded rescaled due dates in conjunction with implementing Kovalyov's [4] bound improvement procedure.

2. The proposed fully polynomial approximation scheme

It is well known that

$$T_{\max} \leqslant T^* \leqslant nT_{\max} \tag{1}$$

where $T_{\rm max} = \max\{T_j\}$ for the earliest due date (EDD)sequence, that is, $T_{\rm max}$ is a lower bound (LB) and $nT_{\rm max}$ is an upper bound (UB) on T^* . Lawler [6] points out that instead of running his OPP algorithm in the [0,P] interval, it suffices to run it in the [0,UB] interval, that is the $[0,nT_{\rm max}]$ interval when $UB = nT_{\rm max}$, resulting in a $O(n^4UB) = O(n^5T_{\rm max})$ running time for OPP.

Let us replace the due dates d_j with the rescaled due dates $\delta_j = \left\lceil \frac{d_j}{K} \right\rceil$ where K is a scale factor proportional to the desired level of approximation ε (the function \bigcap returns the smallest integer greater or equal than its argument). The processing times p_j are also replaced by the new processing times $\frac{p_j}{K}$ (with no rounding).

Let S_A be an optimal sequence for the $\binom{p_j}{K}, \delta_j$ problem and let T_A^* , T_A be the total tardiness of S_A for the $(p_j, K\delta_j)$ and (p_j, d_j) problems, respectively. The inequality $(\delta_j - 1)K < d_j \leqslant \delta_j K$ leads to $C_j - \delta_j$ $K \leqslant C_j - d_j < C_j - \delta_j K + K$ for $j = 1, \ldots, n$ which in turn leads to

$$T_A^* \leqslant T_A < T_A^* + Kn \tag{2}$$

The inequality $K\delta_i \geqslant d_i$ leads to

$$T^* \leq T^* \tag{3}$$

because T_A^* and T^* are both optimal quantities for the $(p_j, K\delta_j)$ and (p_j, d_j) problems, respectively. The combination of (2) and (3) leads to

$$T_A \leqslant T^* + Kn \tag{4}$$

If $K = \frac{\varepsilon LB}{n} = \frac{\varepsilon T_{\max}}{n}$ is substituted in inequality (4), then the combination of (1) and (4) yields $T_A - T^* \leq \varepsilon LB = \varepsilon T_{\max} \leq \varepsilon T^*$, the desired approximation. Furthermore, the $O(\frac{n^4 UB}{K})$ time bound of the OPP algorithm for solving the $(\frac{p_j}{K}, \delta_j)$ problem becomes $O(\frac{n^5 UB}{\varepsilon LB}) = O(\frac{n^6}{\varepsilon})$ for the selected K value and for $LB = T_{\max}$ and $UB = nT_{\max}$, respectively.

Kovalyov [4] proposed a bound improvement procedure which when applied to the LB = $T_{\rm max}$ and UB = $nT_{\rm max}$ values (assuming that n > 3) with our rounding approximation scheme (with $\varepsilon = 1$) embedded in it will find a number F^0 such that $F^0 \leqslant T^* \leqslant 3F^0$ in $O(n^5 \log n)$ time. These improved bounds can then be used in place of the LB = $T_{\rm max}$ and UB = $nT_{\rm max}$ values in our rounding approximation scheme to yield the desired approximation of $T_A - T^* \leqslant \varepsilon T^*$ in $O(n^5 \log n + \frac{n^5}{\varepsilon})$ overall time.

In summary, a fully polynomial approximation scheme running in $O\left(n^5\log n + \frac{n^5}{\epsilon}\right)$ time can be developed for the ordinary NP-hard $1/\overline{T}$ problem (whenever $T_{\max} > 0$ for the EDD sequence) by first computing $K = \frac{eT_{\max}}{n}$, then embedding the OPP algorithm with the non-rounded rescaled processing times $\frac{P_j}{K}$ and the rounded rescaled due dates $\delta_j = \left\lceil \frac{d_j}{K} \right\rceil$ in Kovalyov's [4] bound improvement procedure, and finally running the OPP algorithm again utilizing the improved bounds obtained from Kovalyov's [4] procedure. If $T_{\max} = 0$ for the EDD sequence, then the $1//\overline{T}$ problem is solved optimally in $O(n\log n)$ time by implementing the EDD sequence.

3. Conclusions

A fully polynomial approximation scheme running in $O\left(n^5\log n + \frac{n^5}{\epsilon}\right)$ time was developed for the $1/\overline{T}$ problem. The proposed algorithm runs faster than the original fully polynomial approximation scheme developed by Lawler [6]. The computational savings stem from rounding the rescaled due dates (instead of rounding the rescaled processing times) and from applying Kovalyov's [4] bound improvement procedure.

Acknowledgements

We would like to thank the referees for their constructive criticism which helped us improve an earlier version of this note and for making us aware of Kovalyov's [4] paper.

References

- [1] S. Chang, Q. Lu, G. Tang, W. Yu, On decomposition of the total tardiness problem, Operations Research Letters 17 (1995) 221–229.
- [2] F. Della Croce, A. Grosso, V. Paschos, Lower bounds on the approximation ratios of leading heuristics for the single-machine total tardiness problem, Journal of Scheduling 7 (2004) 85–91.
- [3] J. Du, J.Y.-T. Leung, Minimizing total tardiness on one machine is NP-hard, Mathematics of Operations Research 15 (1990) 483–495.
- [4] M.Y. Kovalyov, Improving the complexities of approximation algorithms for optimization problems, Operations Research Letters 17 (1995) 85–87.
- [5] E.L. Lawler, A 'pseudo-polynomial' algorithm for sequencing jobs to minimize total tardiness, Annals of Discrete Mathematics 1 (1977) 331–342.
- [6] E.L. Lawler, A fully polynomial approximation scheme for the total tardiness problem, Operations Research Letters 1 (1982) 207–208.
- [7] C.N. Potts, L.N. Van Wassenhove, A decomposition algorithm for the single-machine total tardiness problem, Operations Research Letters 1 (1982) 177–181.
- [8] W. Szwarc, Some remarks on the decomposition properties of the single-machine total tardiness problem, European Journal of Operational Research 177 (2007) 623–625.